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Abstract: This paper proposes an algelfdT, ) which can be used to express kinematic transformations
in chains of frames that move in threedimensional space.aldgebraic structure of will be discussed end
the most relevant properties will be presented. This algeln be translated into a set of algorithms that
fit well into a compact formalism, by exploiting the operatmerloading feature of modern object-oriented
programming languages. Implementation and applicatierdascussed by means of examples.
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| INTRODUCTION following example:

Coordinate transformations are extensively used in X3,(0) = X3,(2) ™ X2,(1) ™ X1,(0)- 1)
theoretical, applied and computational mechanics. In
the simpliest case, these transformations arise fr

the need of computing the absolute position of poi %ter&(o), i.e the absolute position of the origin of 3

given their r_elat|ve po_smon _respect to rigid f_rame espect to the absolute coordinate system 0, since
which move in three-dimensional space. In this case,

thg transformation can be expr_essed as an affine MaR () = {73,(0), 83,(0) 73.(0) W3,(0)> 73,(0) ¥3,(0) }-
using matrix algebra, quaternion algebra or similar
formalisms. A similar result could be obtained with linear al-

As an extension of the abovementioned proble@¢bra, for example using the Denavit-Hartenberg for-
lets consider the case of a chain of moving frame®alism, [5], however we remark that our approach is
where the position of each frame is known respect fore general and also encompasses speed and accel-
the previous one in the chain: the absolute position @fation transformations in a single operation (for in-
the end of the chain can be expressed as a sequesiance, the absolute speed of 3 is also contained in
of affine transformations based on the relative coordis, ), and depends on angular velocities and speeds
nates. In the robotic field, a compact way to represesftall other systems in the chain).
this kind of nested coordinate transformations is the
Denavit-Hartenberg approach [4], where 4x4 matrices
are used to express rotations and translations with a
single matrix multiplication on four-dimensional vec-
tors; these matrices can be concatenated to express
sequences of coordinate transformations as in robotic |,
arms.

In this work we extend the problem even to speeds
and accelerations. Lets consider a chain of frames
where not only the relative position, but also the rel-
ative speed and relative acceleration of each frame*s
known respect to the previous one in the chain: a for-
malism can be developed to find the absolute position, Figure 1: Example of chained transformation
speed and acceleration of the end of the chain.

To this end we define & operator such that a se-
guence of- operations corresponds to a chain of coor-
dinate transformations. For instance, say;, means I THET(T,>) ALGEBRA
the position, speed and acceleration (either linear and
angular) of the coordinaté respect to coordinatg: We introduce a magmd (T, -) whose non-abelian
one can write sequences of transformations as in thgerator- acts over a 19-dimensional Banach space

This correspond to the case of Fig.1, where for ex-
Iﬁl1ple one can use the previous transformation to com-

f30
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T = {R?x P xR'?}. The- operator has arity = 2. It is well known that 3 can be used to rotate points
Such algebra shows its usefulness in managing @o-space, with rotation expressed hy as Euler pa-
ordinate transformations: each elemgntc T can rameters, ifq, is a pure-quaternion with imaginary
represent a coordinate system in three-dimensiopalt as the cartesian coordinates of a poig;, =
space, including position, rotation informations, asgs(p) = {0, ps,py,p-}. Therefore, the affine trans-
well as speed and acceleration informations. formation of the pointr,, () after rotationg; (., and
In detail, position is expressed byc R?, rotation translationr;, ., can be expressed as:
is expressed by an unitary quaternigne S3. Note
that, alternatively, rotations could be parametrizedis(Ta,(c)) = A3 (Ts,(0))+ b, ()43 (Ta (b)) () (4)
also with a set of three angles, however it is well ) S
known that this could cause problems of map sin- Alternatively, 4 can be expressed with linear alge-
gularities becaus&? is not omeomorphic t§0(3). Praas
The speed of the origin of the frame is denoted with
i € R3, its angular speed is denoted withe R? (ex- Ta(e) = To(o) T Al () ITa - )
pressed in the base of the moving frame). Similarwh
we denote acceleration withand angular accelerationfu
with «, the latter being expressed in the local base o
the moving frame. Thus, we define the vecioe T
as:

ere we introduced the rotation matiid(qy,.))]
fnction of the quaternion;, (., as detailed in [cite].

The termq, (., representing the rotation of the
referencea respect to the referenee can be easily
obtained with a single quaternion product:

. . . 3 3 . - 3
x ={r,q,f,w,t,al,r e R°, q €S, i,w,f,a € R°. () = b (¢ da ) ©6)

— 3 12 i
Note thatT = {R” x P x R**} is a topological as can be seen applying the affine map 4 twice, for

i _ 3
space [7], a double covering &f = {R” x SO(3) X ansforming a poin from reference to reference
R'%} because of the surjective local homeomorphsghd from reference to reference:-

r: S® — SO(3,R) where two quaternions can repre-
sent the same rotation.

Also, T is a non-trivial bundle with fibe6! be-
cause of ther Hopf fibrationS* — S3 = S2, +qa,(b)q$(rp7(a))q2,(b)> U, (c)

Assuming that position, rotation, speed and accel-
eration of a framez in x, are expressed relative to
another frameé, we will use the notatiory,, . Also, + qb,<c>qa,<b>%(rp,<a>)qz,(qu,(c)
we WI|| denote the fr_amé as theparent fram_eqf_a or, =qs(Ta () + qa,(c)QS(rp,(a))qz,(c)-
similarly, a as thechild frameof b. The definition of
the - operation stems from the requirement that We recall that quaternion products are associative

but not commutativé.

as (T, () =as(Th (¢) + b (e) (A3 (Ta, )+

=qs(Tb,(c)) + b, ()95 (Ta, (b)) b, ()T

Xa,(c) = Xa,(b) = Xb,(c) B. Speeds
Ta,(c) Ta,(®) To.(c) Speed terms, () andw, () can be obtained from
?a"(c) ‘;la’(b) ?b*(c) symbolic differentiation of Eq.6 and Eq.6. By apply-
a(e) 4 L b(e) (2) ing the chain rule to the differentiation of the affine
Wa,(c) Wa, (b) “b,(c) map of Eq.4:
Ta,(c) Ta,(b) Tb,(c)
Qa,(c) Qa,(b) X, (c) A5 (Ta, () =A3(Th,(c) + b, ()5 (Ta, (1)) Ay, () +
In the following we develop the expressions for the + qb7(c)q$(ra,(b))qz,<c)+
termsin 2. %
+ Qb,(c)QS(ra,(b))Qb,(c)
A. Position and rotation 43 (Fa,(0)) =83 (b, (0)) 2. ()5 (Vo 0)) U () +
Since||qq||||as]| = |la.asl|, the following endomor- (045 (Fa, ) )G, o)

phism is|| - ||2-norm preserving and rotates a quaterds (¥, (c)) =ds (4,(c)) + 24, (¢) A3 (Ya,(5) )5, (o) +
nion q% € Qby means of*fsm unimodular quaternion + qb,(c)q%(fa,(b))q;(c). (7
q, € S° and its conjugatey’:

1By Hurwitz theorem, there are no other associative skew fields
qz = q,qpQ;.- (3) inlarger dimensions.
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Similarly, one can perform the time derivative of [Il PROPERTIES
the expression of Eq.6:
In this section we will outline the most relevant prop-
Aa,(c) = Ab,(¢)9a,®) T Ab,(c)Da,(b)- (8) erties of theT (T, ) algebra, as defined in the previ-
ous paragraphs.
The angular velocity, () of x,, (), expressed in
the coordinates of refereneg follows immediately THEOREM 1
the quaternion derivativg, ., obtained with Eq.8 us-

ing the following formula (discussed in [cite]): TheT (T, -) magma algebra s also a monoid fea-

turing an identity elemeng; € T.

qs(Wa,(¢)) = 24, (e)Ya,(c)- 9) Proof. Let consider an element; € T asx; =
{0,q;,0,0,0,0}, whereq; is the unitary quaternion
C. Accelerations 1+ 0i + 05 + Ok.

The producty, = x» > xs gives
The last two parts of thg, (., vector are the acceler-

ation#, () and the angular acceleration .. Xa = {Ta,Qa; Ta, Wa, T, Qg }
By differentiation of Eq.7:
. According to the definition 4, the position term can

A5 (Ta () =as(Tp (o) + 2db,(c)q<s(ra,<b))qz,(c)+ be made explicit as:
+24,(0)43 (Ta,(5) )Gy )+ qs(ra) = qs(0) + qras(ry)aj.
+ 24, ()95 (Ta, () Ay () . .
_ : X Sinceqrqs(ry)q; = ag(ry) by property of quater-
+ qb,(c)Qs(ra,(b))Qb,(c)‘F nion multiplication, it is also
+ b, () A3 (Ta, (b)) Ay (o)
© @ ®)/5. (@) as(ra) = ag(ry) (13)

+ Ay, ()43 (Ta,(6)) G, (o)
=05 (Tp,(¢)) + 20, ()95 (Ta, () Dy, (o) Also, Eq.6 becomes

+ 44, ()45 (Ta, () )G, (o) T do = Q19 = Qp- (14)
+ 24, ()95 (Ta,(8)) Ay (o) T Similarly, one can made explicit the speed and accel-
+ b, ()83 (Ta,(5)) D, () eration terms using definitions 7, 8, 10, 11: by ex-
ploining the aforementioned properties of quaternion
and finally, asis (rq () = as(fa,(c)), itis: multiplications, it is clear that most terms vanish:
s (Fa,(¢)) =as(Fy,(0)) + 265,093 (Ta, )@ o+ 93(Fa) = a3(0) +2(0ags (rs)a)+
+ 461y, (005 (Fay() )l (o) + arqs(ty)a; = qs(f) (15)
. - e = 0qp + qrqp = ¢ 16
+ 2qb,(c)qg(ra,(b))qb7(c)+ q A q>l: . * ( )
b (01 ()t (10) qs(¥a) = 0+ 2(0qs(rp)qy) + 4(0qs (Fs)a7)+
b,(c)4S\La,(d (c * . * .
© ®)7%.() +2(0qs(r,)0%) + qras(iv)q; = as(is)
Angular accelerations follow from the differentia- a7
tion of the epression of Eq.8: da = Oqp + 2(0q5) + qrGp = Gp- (18)

Ga(e) =, (e)Da.(b) + Ab.(c)¥a.(b)+ Thus, from Eq.13-18 and prope_rties 9_,12, it follows
4 N G thatx, = x» > X1 = X», SO> X7 IS the right-neutral
T Ab() Do, (b) T b () D (0) } element of theZ (T, - ) algebra.
=0, (c)a,(b) T 2db,(c)Ya.(b) T Db, (c)a,(b) For reasons of space, we do not develop the prod-
(11) ucty, = x» > X7, itwould be easy to obtain again the
same results of Eg.13-18 (although using other prop-

_ The angglar acceleratlor)l’(c). of Xa,(c)» expressed g tieg of quaternion algera for the cancellation of the
in the coordinates of referenegis obtained from the terms). Hence it follows that y; is also a left-neutral

quatgrnion QOL_JbIe derivat.i\@a,(C) of Eq.11 and from giament in theZ (T, > ) algebra.
the differentiation of Eq.9: Give that the magma has both right and left-neutral

. . . elements7 (T, >) is also a monoid with¢, > x; =
43(a,(¢)) = 245 (0)ba () T 20, Ga) (12) o~ QED.
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THEOREM 2 Also, imposing thaiy, . is null in Eq.8, it fol-
TheT (T, ») algebra is a non-abelian group. ~ 10Ws: . .
Qa,(6) = ~ G, () D,() D, () (22)
With similar algebraic manipulations, and remem-
bering thatq*~'q* = {1,0,0,0}, one can get the ac-
| cleration part of the left inverse, obtaining:

Proof.
For the 7 (T, -) monoid algebra to be a group
each elemenfy must have an inverse elemegt!
such thaty™' = yx = xz, wherey; is the neutra

elment introduced in Theorem 1.~ a5 (Fa,(5)) =0y, (o) [a3 (Fp,(0))+

For semplicity, let’s recall the notation of the prod- i .
uctin Eq.2. Ifxq ) = Xo,) = X1, thenx, o is + 20, (0) A, ()95 (T, (0))
the left-inverse ofy; (), and will be denoted ag, /. + 44, ()9 (o (a3 (F,(0))

Also, x,(c) is the right-inverse of, ), and will be

if ri i H —2¢ c L R c +
denoted as(;%g. Thus, if right and left inverses exist, 20,09y (93 (70,9)

+ 20, () Uy (93 (T0,()) Uy (0 G5, (0)] G )

Xai0) = Xaoy = X1 Xpy(e) = Xo(e) = X1 (23)
Imposingx,, ) = x1 in the product of Eq.2, one cangnq
write xa, ) > Xb,(c) = X1, then it will be possible Lo ' . .
to manipulate the definitions in Eq.4-11 to find the ex- da,(b) = 9y () (Ab,(c) — 2qb,(c)q;(c)qb,(c))q;(c .
pression of the left-inverse by explicitating the terms 82

belonging tox,, (). Finally, using Eq.9 and 12, one can merge Eq.19-
Let start from the transformation of positions. W&4 intox, ), that is the left-inverse,- (13 which sat-
rewrite Eq.4 as: isfiesxa,(b) = Xb, () = Xg(ch) = Xb.(e) = XI-

X Similarly, we could solvey = X = XI
< . N AS =qg(0). . a,(b) . b,{c)
as(Th,(c) + Ab,(0)A5 (Ta, (1) )5, () = 95(0) for x,,(¢): after long symbolic manipulation (not re-
Let left-multiply all terms by quaterniomy, ,, and Ported in these pages in sake of compactness) we
w1 ’ would obtain the same results of Eq.19-24, but with

right-multiply all terms b . By rememberin

9 TPy yo.lb’(cll y 9 inverted subscripts, that is with, (b) swapped with
quaternion algebra propertigg " = {1,0,0,0} and (¢). Therefore, we built the right-inversg 17 and
q{1,0,0,0} =q,q € Q, itis easy to find: ’ a,(b)

we conclude that, for a generic elemant T, right-

a3 (Ya ) = —G; (93 (b)) U (o) (19) and left-inverses are the same, thatis ¥ = y 1% =
. . ’ - ~1_Given the existence of the inverse, the algebra is
This is the first element of the left-inverse vectog group

; ; _ —1L
that in our proof isxa, ) = X, (o)- Although associative, the group is non-abelian

Coming to rotations, remembering that the rOtatioé}nce the>- operation is non commutative: this fol-

partq in the neutral elemeny; is the unit quaternion lows from the fact that quaternion algebra is a skew
{1,0,0,0} as demonstrated in Theorem 1, we rewrit'g?eld QED

Eq.6 as follows:

: ={1 .

() Ga ) = {1,0,0,0} IV SOFTWARE IMPLEMENTATION
Therefore, using quaternion inverses, premultiplying

the terms by, (16) and simplifying, one gets the rotadn order to test the efficiency and the correctness ot

tional part of the left-inverse: the theoretical framework, we implemented a set of
1 software libraries for coordinate transformation using
Qa.(6) = Dy () 20) the c+ language.

For the speed part, one imposes that Eq.7 equals toOur framework exploits the objects-oriented con-
zero: cepts, soy € T elements are represented by objects

. ) . inherited from a C++ class, namédMovingFrame.
as(Th,(e)) + 20, ()3 (Ta, (b)), (c) + After extensive benchmarking, we noticed that it
+ db,(¢)a3(Fa, (b)) U5 () = A3(0) is more convenient to work with objects where angu-

. . . . lar speeds and angular accelerations are represented
Here, few manlpulgtlons with quaternion algebra wi irectly with quaterniong; andg rather than with 3D
produce the following result: vectorsw anda. Thank to the encapsulation paradigm
as(Ta,m)) :q;(lc)(—qg(f@(c)” of OOP, this design .does not affect the way the pro-
9¢ 1 -1 (o1 grammer interacts with the data, because custom func-
+ 24,0 %, (093,00 D) fions can provides and o« only when requested, by
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evaluating Eg.9 and Eq.12. Viceversa, the user can ... etc ...
providew or «, and these are instantly convertedjfo =~ ¢s_30 = ¢s_32 >> cs_21 >> cs_10;
andq using inverse formulas.

Since we used this software library in many en;
gineering projects, we were able to make a statisti%g?

We also implemented the) ! operation, with ar-
a = 1, by overloading the! C++ unary oper-
r. This requires the in-place evaluation of Eq.19-

analysis and we found that, in most cases, objects Thank to the implementation of the inversion, it

ChMovingFrame type are used simply to transform 3Qg i ,ssipje. again in example of Fig.1, to obtain32

pomt_s, and only in few cases there IS some INte1§8hther frames are known: we multiply both sides by
also in speeds and accelerations. This means that {he

. o . ' fcs_10 and!cs_21, and remembering thats_ij >>
_most |mportaqt fu!’lct|on is the one in Eq.4, which wgcs_ij will cancel by Theorems 1 and 2, we simply
implemented in different flavours for optimal execlyite
tion speed. For example, if a singlaMovingFrame
object must transform many 3D vectors at once, we ¢s-32 = ¢s.30 >> !cs.10 >> !cs.21;

can use Eq.5, which is a bit faster than Eq.4 because Note that the previous statement would require two
rotation by matrix-vector multiplication (after the majnyersions and two coordinate transformations, but a
trix has been initialized once, with the nine valueshore efficient approach can be developed. In fact
takes less time than computing the quaternion endgs can implement amverse transformatiooperator,

morphism. However this optimization implies that aamedk<, which requires fewer CPU operations:
3x3 matrix is stored in th&€hMovingFrame object,

for easing the case of multiple point transformations;
the nine values of the matrix are recomputed when the For reasons of space, details about the implemen-
rotation of the frame changes. The improved perfaation of the<< operator are not given; suffices to say
mance is worth while the overhead of keeping sughat formulas are not much different from the ones in
matrix updated, and the increased memory requieg.19-24.
ment. The ChMovingFrame class inherits the function-
So far, eaclthMovingFrame object will contain ality of a parent clas§hFrame, which features sim-
three vectors, three quaternions and an auxiliary 3gfified functions for cases which do not need speed
matrix: or acceleration data. All classes are templated and
L metaprogrammed [2], they can work with floatin
Xert = {r,q, [A(@)]. 1, 4., 4} pointFi)n (?ouble or si[néle prgcision. °
An useful feature of the C++ language is theer- We remark that we performed intense benchmarks
ator overloading wich allows a straightforward map-and deep profiling of the code, to obtain the best trade-
ping of theT (T, >) algebra into a new programmingPff between computational efficiency, ease of use and
syntax where the- operator can be represented aploitation of OOP features [3].
a binary operator between twghMovingFrame 0b- The libraries for theZ algebra has been exten-
jects. To avoid confusion with other default operatogively used in our Chrono::Engine C++ library for
*,+,-,/, we decided to use the> symbol to repre- multi body simulation [6] [1]. After testing and pro-
sent the- operation. filing we got satisfying results in terms of clean code,
Such operation is implemented in the header of tg@se of development and fast computation. Such a li-
ChMovingFrame class, using the following binary op-brary has been succesfully used in many engineering

cs_32 = ¢s_30 << c¢s_10 << cs_21;

erator overloading: projects by hundreds of programmers and users.
ChFrameMoving<Real>
operator >> (const ChFrameMoving<Real>& Fb) V CONCLUSION
const
etc ...

This paper introduced th& (T, >-) algebra as a com-

In the function above, the formulas in Eg.4-11 aneact formal method to represent kinematic transforma-
evaluated, where the return value represents the restiftns in chains of moving frames.
ing vectory,, ), the object itself (thehis pointer) is Two theorems about the algebraic structure have
the left argument, (,) and parameteFb is the right been demonstrated, showing that theT, >-) magma

argumenty (c)- is a non-abelian group.
Thus, the example of Eq.1 (see Fig.1) could be This formal framework maps well into a software
written with the following source code: implementation, thank to the operator-overloading of

the C++ language. Some practical issues and exam-

ChMovingFrame<> cs_30, c¢s_32, cs_21, cs_10;
ples have been discussed.

cs_10.coord.pos = ChVector<>(2,4,1);
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This algebrais implemented in our Chrono::Engine
library for multibody simulation, hence it found ap-
plication in many engineering fields and is currently
adopted in many research centers around the world.
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