
9th International Workshop on Research and Education in Mechatronics
September18th-19th 2008, Bergamo, Italy

A NON-ABELIAN GROUP ALGEBRA FOR KINEMATIC COORDINATE

TRANSFORMATION

Alessandro Tasora1

1Universit̀a degli Studi di Parma, Dipartimento di Ingegneria Industriale, Parma, Italy

Abstract: This paper proposes an algebraT (T,≻) which can be used to express kinematic transformations
in chains of frames that move in threedimensional space. Thealgebraic structure ofT will be discussed end
the most relevant properties will be presented. This algebra can be translated into a set of algorithms that
fit well into a compact formalism, by exploiting the operator-overloading feature of modern object-oriented
programming languages. Implementation and application are discussed by means of examples.

Key words: Kinematics, algebra, coordinates, robotics

I I NTRODUCTION

Coordinate transformations are extensively used in
theoretical, applied and computational mechanics. In
the simpliest case, these transformations arise from
the need of computing the absolute position of points
given their relative position respect to rigid frames
which move in three-dimensional space. In this case,
the transformation can be expressed as an affine map
using matrix algebra, quaternion algebra or similar
formalisms.

As an extension of the abovementioned problem,
lets consider the case of a chain of moving frames,
where the position of each frame is known respect to
the previous one in the chain: the absolute position of
the end of the chain can be expressed as a sequence
of affine transformations based on the relative coordi-
nates. In the robotic field, a compact way to represent
this kind of nested coordinate transformations is the
Denavit-Hartenberg approach [4], where 4x4 matrices
are used to express rotations and translations with a
single matrix multiplication on four-dimensional vec-
tors; these matrices can be concatenated to express
sequences of coordinate transformations as in robotic
arms.

In this work we extend the problem even to speeds
and accelerations. Lets consider a chain of frames
where not only the relative position, but also the rel-
ative speed and relative acceleration of each frame is
known respect to the previous one in the chain: a for-
malism can be developed to find the absolute position,
speed and acceleration of the end of the chain.

To this end we define a≻ operator such that a se-
quence of≻ operations corresponds to a chain of coor-
dinate transformations. For instance, sayχi,(j) means
the position, speed and acceleration (either linear and
angular) of the coordinatei respect to coordinatej:
one can write sequences of transformations as in the

following example:

χ3,(0) = χ3,(2) ≻ χ2,(1) ≻ χ1,(0). (1)

This correspond to the case of Fig.1, where for ex-
ample one can use the previous transformation to com-
puter3,(0), i.e the absolute position of the origin of 3
respect to the absolute coordinate system 0, since

χ3,(0) = {r3,(0), q3,(0), ṙ3,(0), ω3,(0), r̈3,(0), α3,(0)}.

A similar result could be obtained with linear al-
gebra, for example using the Denavit-Hartenberg for-
malism, [5], however we remark that our approach is
more general and also encompasses speed and accel-
eration transformations in a single operation (for in-
stance, the absolute speed of 3 is also contained in
χ3,(0), and depends on angular velocities and speeds
of all other systems in the chain).

0

χ3,(0)

χ3,(2)

3

2 1
χ2,(1)

χ1,(0) r3,(2)

r3,(0)

ω1,(0)

r3,(0)

r3,(2)
r2,(1)

r1,(0)

.

.

Figure 1: Example of chained transformation

II T HE T (T,≻) ALGEBRA

We introduce a magmaT (T,≻) whose non-abelian
operator≻ acts over a 19-dimensional Banach space

REM2008, Bergamo, Italy

T = {R3×P×R12}. The≻ operator has aritȳα = 2.
Such algebra shows its usefulness in managing co-

ordinate transformations: each elementχ ∈ T can
represent a coordinate system in three-dimensional
space, including position, rotation informations, as
well as speed and acceleration informations.

In detail, position is expressed byr ∈ R3, rotation
is expressed by an unitary quaternionq ∈ S3. Note
that, alternatively, rotations could be parametrized
also with a set of three angles, however it is well
known that this could cause problems of map sin-
gularities becauseR3 is not omeomorphic toSO(3).
The speed of the origin of the frame is denoted with
ṙ ∈ R3, its angular speed is denoted withω ∈ R3 (ex-
pressed in the base of the moving frame). Similarly
we denote acceleration witḧr and angular acceleration
with α, the latter being expressed in the local base of
the moving frame. Thus, we define the vectorχ ∈ T

as:

χ = {r,q, ṙ, ω, r̈, α}, r ∈ R3, q ∈ S
3, ṙ, ω, r̈, α ∈ R3.

Note thatT = {R3 × P × R12} is a topological
space [7], a double covering ofT = {R3 × SO(3) ×
R12} because of the surjective local homeomorphism
r : S3 → SO(3, R) where two quaternions can repre-
sent the same rotation.

Also, T is a non-trivial bundle with fiberS1 be-
cause of theπ Hopf fibrationS1 →֒ S3 π

−→ S2.
Assuming that position, rotation, speed and accel-

eration of a framea in χa are expressed relative to
another frameb, we will use the notationχa,(b). Also,
we will denote the frameb as theparent frameof a or,
similarly, a as thechild frameof b. The definition of
the≻ operation stems from the requirement that

χa,(c) = χa,(b) ≻ χb,(c) →






























ra,(c)

qa,(c)

ṙa,(c)

ωa,(c)

r̈a,(c)

αa,(c)































=































ra,(b)

qa,(b)

ṙa,(b)

ωa,(b)

r̈a,(b)

αa,(b)































≻































rb,(c)

qb,(c)

ṙb,(c)

ωb,(c)

r̈b,(c)

αb,(c)































(2)

In the following we develop the expressions for the
terms in 2.

A. Position and rotation

Since||qa||||qb|| = ||qaqb||, the following endomor-
phism is|| · ||2-norm preserving and rotates a quater-
nion qp ∈ Q by means of an unimodular quaternion
qr ∈ S3 and its conjugateq∗

r :

qo
p = qrqpq

∗

r . (3)

It is well known that 3 can be used to rotate points
in space, with rotation expressed byqr as Euler pa-
rameters, ifqp is a pure-quaternion with imaginary
part as the cartesian coordinates of a point:qp =
qℑ(p) = {0, px, py, pz}. Therefore, the affine trans-
formation of the pointra,(b) after rotationqb,(c) and
translationrb,(c) can be expressed as:

qℑ(ra,(c)) = qℑ(rb,(c))+qb,(c)qℑ(ra,(b))q
∗

b,(c). (4)

Alternatively, 4 can be expressed with linear alge-
bra as

ra,(c) = rb,(c) + [A(qb,(c))]ra,(b). (5)

where we introduced the rotation matrix[A(qb,(c))]
function of the quaternionqb,(c) as detailed in [cite].

The termqa,(c), representing the rotation of the
referencea respect to the referencec, can be easily
obtained with a single quaternion product:

qa,(c) = qb,(c)qa,(b) (6)

as can be seen applying the affine map 4 twice, for
transforming a pointp from referencea to referenceb
and from referenceb to referencec:

qℑ(rp,(c)) =qℑ(rb,(c)) + qb,(c)

(

qℑ(ra,(b))+

+qa,(b)qℑ(rp,(a))q
∗

a,(b)

)

q∗

b,(c)

=qℑ(rb,(c)) + qb,(c)qℑ(ra,(b))q
∗

b,(c)+

+ qb,(c)qa,(b)qℑ(rp,(a))q
∗

a,(b)q
∗

b,(c)

=qℑ(ra,(c)) + qa,(c)qℑ(rp,(a))q
∗

a,(c).

We recall that quaternion products are associative
but not commutative1.

B. Speeds

Speed termṡra,(c) and ωa,(c) can be obtained from
symbolic differentiation of Eq.6 and Eq.6. By apply-
ing the chain rule to the differentiation of the affine
map of Eq.4:

q̇ℑ(ra,(c)) =q̇ℑ(rb,(c)) + q̇b,(c)qℑ(ra,(b))q
∗

b,(c)+

+ qb,(c)q̇ℑ(ra,(b))q
∗

b,(c)+

+ qb,(c)qℑ(ra,(b))q̇
∗

b,(c)

q̇ℑ(ra,(c)) =q̇ℑ(rb,(c)) + 2q̇b,(c)qℑ(ra,(b))q
∗

b,(c)+

+ qb,(c)q̇ℑ(ra,(b))q
∗

b,(c)

qℑ(ṙa,(c)) =qℑ(ṙb,(c)) + 2q̇b,(c)qℑ(ra,(b))q
∗

b,(c)+

+ qb,(c)qℑ(ṙa,(b))q
∗

b,(c). (7)

1By Hurwitz theorem, there are no other associative skew fields
in larger dimensions.

REM2008, Bergamo, Italy

Similarly, one can perform the time derivative of
the expression of Eq.6:

q̇a,(c) = q̇b,(c)qa,(b) + qb,(c)q̇a,(b). (8)

The angular velocityωa,(c) of χa,(c), expressed in
the coordinates of referencea, follows immediately
the quaternion derivativėqa,(c) obtained with Eq.8 us-
ing the following formula (discussed in [cite]):

qℑ(ωa,(c)) = 2q∗

a,(c)q̇a,(c). (9)

C. Accelerations

The last two parts of theχa,(c) vector are the acceler-
ation r̈a,(c) and the angular accelerationαa,(c).

By differentiation of Eq.7:

q̈ℑ(ra,(c)) =q̈ℑ(rb,(c)) + 2q̈b,(c)qℑ(ra,(b))q
∗

b,(c)+

+ 2q̇b,(c)q̇ℑ(ra,(b))q
∗

b,(c)+

+ 2q̇b,(c)qℑ(ra,(b))q̇
∗

b,(c)+

+ q̇b,(c)q̇ℑ(ra,(b))q
∗

b,(c)+

+ qb,(c)q̈ℑ(ra,(b))q
∗

b,(c)+

+ qb,(c)q̇ℑ(ra,(b))q̇
∗

b,(c)

=q̈ℑ(rb,(c)) + 2q̈b,(c)qℑ(ra,(b))q
∗

b,(c)+

+ 4q̇b,(c)q̇ℑ(ra,(b))q
∗

b,(c)+

+ 2q̇b,(c)qℑ(ra,(b))q̇
∗

b,(c)+

+ qb,(c)q̈ℑ(ra,(b))q
∗

b,(c)

and finally, as̈qℑ(ra,(c)) = qℑ(r̈a,(c)), it is:

qℑ(r̈a,(c)) =qℑ(r̈b,(c)) + 2q̈b,(c)qℑ(ra,(b))q
∗

b,(c)+

+ 4q̇b,(c)qℑ(ṙa,(b))q
∗

b,(c)+

+ 2q̇b,(c)qℑ(ra,(b))q̇
∗

b,(c)+

+ qb,(c)qℑ(r̈a,(b))q
∗

b,(c) (10)

Angular accelerations follow from the differentia-
tion of the epression of Eq.8:

q̈a,(c) =q̈b,(c)qa,(b) + q̇b,(c)q̇a,(b)+

+ q̇b,(c)q̇a,(b) + qb,(c)q̈a,(b)

=q̈b,(c)qa,(b) + 2q̇b,(c)q̇a,(b) + qb,(c)q̈a,(b)

(11)

The angular accelerationαa,(c) of χa,(c), expressed
in the coordinates of referencea, is obtained from the
quaternion double derivativëqa,(c) of Eq.11 and from
the differentiation of Eq.9:

qℑ(αa,(c)) = 2q̇∗

a,(c)q̇a,(c) + 2q∗

a,(c)q̈a,(c) (12)

III PROPERTIES

In this section we will outline the most relevant prop-
erties of theT (T,≻) algebra, as defined in the previ-
ous paragraphs.

THEOREM 1

TheT (T,≻) magma algebra is also a monoid fea-
turing an identity elementχI ∈ T.

Proof. Let consider an elementχI ∈ T asχI =
{0,qI ,0,0,0,0}, whereqI is the unitary quaternion
1 + 0i + 0j + 0k.

The productχa = χb ≻ χI gives

χa = {ra,qa, ṙa, ωa, r̈, αa}

. According to the definition 4, the position term can
be made explicit as:

qℑ(ra) = qℑ(0) + qIqℑ(rb)q
∗

I .

SinceqIqℑ(rb)q
∗

I = qℑ(rb) by property of quater-
nion multiplication, it is also

qℑ(ra) = qℑ(rb) (13)

Also, Eq.6 becomes

qa = qIqb = qb. (14)

Similarly, one can made explicit the speed and accel-
eration terms using definitions 7, 8, 10, 11: by ex-
ploining the aforementioned properties of quaternion
multiplications, it is clear that most terms vanish:

qℑ(ṙa) = qℑ(0) + 2(0qℑ(rb)q
∗

I)+

qIqℑ(ṙb)q
∗

I = qℑ(ṙb) (15)

q̇a = 0qb + qI q̇b = q̇b (16)

qℑ(r̈a) = 0 + 2(0qℑ(rb)q
∗

I) + 4(0qℑ(ṙb)q
∗

I)+

+ 2(0qℑ(rb)0
∗) + qIqℑ(r̈b)q

∗

I = qℑ(r̈b)
(17)

q̈a = 0qb + 2(0q̇b) + qI q̈b = q̈b. (18)

Thus, from Eq.13-18 and properties 9,12, it follows
thatχa = χb ≻ χI = χb, so≻ χI is the right-neutral
element of theT (T,≻) algebra.

For reasons of space, we do not develop the prod-
uctχa = χb ≻ χI ; it would be easy to obtain again the
same results of Eq.13-18 (although using other prop-
erties of quaternion algera for the cancellation of the
terms). Hence it follows that≻ χI is also a left-neutral
element in theT (T,≻) algebra.

Give that the magma has both right and left-neutral
elements,T (T,≻) is also a monoid withχb ≻ χI =
χI ≻ χb = χb. QED.

REM2008, Bergamo, Italy

THEOREM 2

TheT (T,≻) algebra is a non-abelian group.

Proof.
For theT (T,≻) monoid algebra to be a group,

each elementχ must have an inverse elementχ−1

such thatχ−1 ≻ χ = χI , whereχI is the neutral
elment introduced in Theorem 1.

For semplicity, let’s recall the notation of the prod-
uct in Eq.2. Ifχa,(b) ≻ χb,(c) = χI , thenχa,(b) is
the left-inverse ofχb,(c), and will be denoted asχ−1L

b,(c).
Also, χb,(c) is the right-inverse ofχa,(b), and will be
denoted asχ−1R

a,(b). Thus, if right and left inverses exist,

χa,(b) ≻ χ−1R
a,(b) = χI , χ−1L

b,(c) ≻ χb,(c) = χI

Imposingχa,(c) = χI in the product of Eq.2, one can
write χa,(b) ≻ χb,(c) = χI , then it will be possible
to manipulate the definitions in Eq.4-11 to find the ex-
pression of the left-inverse by explicitating the terms
belonging toχa,(b).

Let start from the transformation of positions. We
rewrite Eq.4 as:

qℑ(rb,(c)) + qb,(c)qℑ(ra,(b))q
∗

b,(c) = qℑ(0).

Let left-multiply all terms by quaternionq−1
b,(c) and

right-multiply all terms byq∗−1
b,(c). By remembering

quaternion algebra propertiesqq−1 = {1, 0, 0, 0} and
q{1, 0, 0, 0} = q , q ∈ Q, it is easy to find:

qℑ(ra,(b)) = −q
−1
b,(c)qℑ(rb,(c))q

∗−1
b,(c). (19)

This is the first element of the left-inverse vector,
that in our proof isχa,(b) = χ−1L

b,(c).
Coming to rotations, remembering that the rotation

partq in the neutral elementχI is the unit quaternion
{1, 0, 0, 0} as demonstrated in Theorem 1, we rewrite
Eq.6 as follows:

qb,(c)qa,(b) = {1, 0, 0, 0}.

Therefore, using quaternion inverses, premultiplying
the terms byq−1

b,(c) and simplifying, one gets the rota-
tional part of the left-inverse:

qa,(b) = q
−1
b,(c). (20)

For the speed part, one imposes that Eq.7 equals to
zero:

qℑ(ṙb,(c)) + 2q̇b,(c)qℑ(ra,(b))q
∗

b,(c)+

+ qb,(c)qℑ(ṙa,(b))q
∗

b,(c) = qℑ(0)

Here, few manipulations with quaternion algebra will
produce the following result:

qℑ(ṙa,(b)) =q
−1
b,(c)(−qℑ(ṙb,(c))+

+ 2q̇b,(c)q
−1
b,(c)qℑ(rb,(c)))q

∗−1
b,(c). (21)

Also, imposing thatq̇a,(c) is null in Eq.8, it fol-
lows:

q̇a,(b) = −q
−1
b,(c)q̇b,(c)q

−1
b,(c). (22)

With similar algebraic manipulations, and remem-
bering thatq∗−1q∗ = {1, 0, 0, 0}, one can get the ac-
cleration part of the left inverse, obtaining:

qℑ(r̈a,(b)) =q
−1
b,(c)[−qℑ(r̈b,(c))+

+ 2q̈b,(c)q
−1
b,(c)qℑ(rb,(c))

+ 4q̇b,(c)q
−1
b,(c)(qℑ(ṙb,(c))

+ −2q̇b,(c)q
−1
b,(c)qℑ(rb,(c)))+

+ 2q̇b,(c)q
−1
b,(c)qℑ(rb,(c))q

−1
b,(c)q̇

∗

b,(c)]q
∗−1
b,(c)

(23)

and

q̈a,(b) = q
−1
b,(c)(q̈b,(c) − 2q̇b,(c)q

−1
b,(c)q̇b,(c))q

−1
b,(c).

(24)
Finally, using Eq.9 and 12, one can merge Eq.19-

24 intoχa,(b), that is the left-inverseχ−1L
b,(c) which sat-

isfiesχa,(b) ≻ χb,(c) = χ−1L
b,(c) ≻ χb,(c) = χI .

Similarly, we could solveχa,(b) ≻ χb,(c) = χI

for χb,(c): after long symbolic manipulation (not re-
ported in these pages in sake of compactness) we
would obtain the same results of Eq.19-24, but with
inverted subscripts, that is witha, (b) swapped with
b, (c). Therefore, we built the right-inverseχ−1R

a,(b) and
we conclude that, for a generic elementχ ∈ T, right-
and left-inverses are the same, that isχ−1R = χ−1L =
χ−1. Given the existence of the inverse, the algebra is
a group.

Although associative, the group is non-abelian
since the≻ operation is non commutative: this fol-
lows from the fact that quaternion algebra is a skew
field. QED.

IV SOFTWARE IMPLEMENTATION

In order to test the efficiency and the correctness ot
the theoretical framework, we implemented a set of
software libraries for coordinate transformation using
the C++ language.

Our framework exploits the objects-oriented con-
cepts, soχ ∈ T elements are represented by objects
inherited from a C++ class, namedChMovingFrame.

After extensive benchmarking, we noticed that it
is more convenient to work with objects where angu-
lar speeds and angular accelerations are represented
directly with quaternionṡq andq̈ rather than with 3D
vectorsω andα. Thank to the encapsulation paradigm
of OOP, this design does not affect the way the pro-
grammer interacts with the data, because custom func-
tions can provideω andα only when requested, by

REM2008, Bergamo, Italy

evaluating Eq.9 and Eq.12. Viceversa, the user can
provideω or α, and these are instantly converted toq̇

andq̈ using inverse formulas.
Since we used this software library in many en-

gineering projects, we were able to make a statistical
analysis and we found that, in most cases, objects of
ChMovingFrame type are used simply to transform 3D
points, and only in few cases there is some interest
also in speeds and accelerations. This means that the
most important function is the one in Eq.4, which we
implemented in different flavours for optimal execu-
tion speed. For example, if a singleChMovingFrame
object must transform many 3D vectors at once, we
can use Eq.5, which is a bit faster than Eq.4 because
rotation by matrix-vector multiplication (after the ma-
trix has been initialized once, with the nine values)
takes less time than computing the quaternion endo-
morphism. However this optimization implies that a
3x3 matrix is stored in theChMovingFrame object,
for easing the case of multiple point transformations;
the nine values of the matrix are recomputed when the
rotation of the frame changes. The improved perfor-
mance is worth while the overhead of keeping such
matrix updated, and the increased memory require-
ment.

So far, eachChMovingFrame object will contain
three vectors, three quaternions and an auxiliary 3x3
matrix:

χc++ = {r,q, [A(q)], ṙ, q̇, r̈, q̈}.

An useful feature of the C++ language is theoper-
ator overloading, wich allows a straightforward map-
ping of theT (T,≻) algebra into a new programming
syntax where the≻ operator can be represented as
a binary operator between twoChMovingFrame ob-
jects. To avoid confusion with other default operators
*,+,-,/, we decided to use the>> symbol to repre-
sent the≻ operation.

Such operation is implemented in the header of the
ChMovingFrame class, using the following binary op-
erator overloading:

ChFrameMoving<Real>

operator >> (const ChFrameMoving<Real>& Fb)

const

... etc ...

In the function above, the formulas in Eq.4-11 are
evaluated, where the return value represents the result-
ing vectorχa,(c), the object itself (thethis pointer) is
the left argumentχa,(b) and parameterFb is the right
argumentχb,(c).

Thus, the example of Eq.1 (see Fig.1) could be
written with the following source code:

ChMovingFrame<> cs 30, cs 32, cs 21, cs 10;

cs 10.coord.pos = ChVector<>(2,4,1);

... etc ...

cs 30 = cs 32 >> cs 21 >> cs 10;

We also implemented the(·)−1 operation, with ar-
ity ᾱ = 1, by overloading the! C++ unary oper-
ator. This requires the in-place evaluation of Eq.19-
24. Thank to the implementation of the inversion, it
is possible, again in example of Fig.1, to obtaincs 32

if other frames are known: we multiply both sides by
!cs 10 and!cs 21, and remembering thatcs ij >>

!cs ij will cancel by Theorems 1 and 2, we simply
write

cs 32 = cs 30 >> !cs 10 >> !cs 21;

Note that the previous statement would require two
inversions and two coordinate transformations, but a
more efficient approach can be developed. In fact
we can implement aninverse transformationoperator,
named<<, which requires fewer CPU operations:

cs 32 = cs 30 << cs 10 << cs 21;

For reasons of space, details about the implemen-
tation of the<< operator are not given; suffices to say
that formulas are not much different from the ones in
Eq.19-24.

The ChMovingFrame class inherits the function-
ality of a parent classChFrame, which features sim-
plified functions for cases which do not need speed
or acceleration data. All classes are templated and
metaprogrammed [2], they can work with floating
point in double or single precision.

We remark that we performed intense benchmarks
and deep profiling of the code, to obtain the best trade-
off between computational efficiency, ease of use and
exploitation of OOP features [3].

The libraries for theT algebra has been exten-
sively used in our Chrono::Engine C++ library for
multi body simulation [6] [1]. After testing and pro-
filing we got satisfying results in terms of clean code,
ease of development and fast computation. Such a li-
brary has been succesfully used in many engineering
projects by hundreds of programmers and users.

V CONCLUSION

This paper introduced theT (T,≻) algebra as a com-
pact formal method to represent kinematic transforma-
tions in chains of moving frames.

Two theorems about the algebraic structure have
been demonstrated, showing that theT (T,≻) magma
is a non-abelian group.

This formal framework maps well into a software
implementation, thank to the operator-overloading of
the C++ language. Some practical issues and exam-
ples have been discussed.

REM2008, Bergamo, Italy

This algebra is implemented in our Chrono::Engine
library for multibody simulation, hence it found ap-
plication in many engineering fields and is currently
adopted in many research centers around the world.

REFERENCES

[1] Paolo Righettini Alessandro Tasora, Marco Sil-
vestri. Architecture of the chrono::engine physics
simulation middleware. InProceedings of Multi-
body Dynamics 2007, ECCOMAS thematic con-
ference, Milano, Italy, June 2007.

[2] A. Alexandrescu.Modern C++ Design: Generic
Programming and Design Patterns Applied.
Addison-Wesley, New York, 2001.

[3] A. Alexandrescu H. Sutter.C++ Coding Stan-
dards: 101 Rules, Guidelines, and Best Practices.
Addison-Wesley, New York, 2004.

[4] M. Vidyasagar M.W.Spong.Robot Dynamics and
Control. Wiley, New York, 1989.

[5] A. Shabana.Multibody Systems. John Wiley and
Sons, New York, 1989.

[6] A. Tasora. Chrono::engine project, web page,
2006.

[7] H. Weyl. The Theory of Groups and Quantum Me-
chanics. Dover Publications, New York, 1950.

