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Abstract . This work deals with an approach to the multibody simulation based on the
Lagrangian “augmented” formulation, where the adoption of quaternions as rotational
coordinates can lead to interesting results. The properties of quaternion algebra let us obtain
a single analytical general-purpose formulation of constraint’s jacobians which can be used
for a wide class of holonomic joints, like spherical joints , revolute joints, cylindrical joints,
‘point on line’ and many others, up to 64.
Despite the apparent complexity of this analytical approach, the formulas has been arranged
in an optimal way which allows easy run-time simplifications and fast, efficient calculus.
Moreover, given that most constraints can be represented with a single formulation, the
method fits well into an object-oriented approach. We implemented a multibody software in
C++ language on the basis of these theoretical results.

1 INTRODUCTION

The most common classification among multibody system formulations relies on the type
of coordinates adopted in the equations. Using a maximal set of coordinates, as in our method,
all the translational and rotational coordinates of rigid bodies are taken into account in the
differential dynamical equations, while all the constraints between rigid bodies are translated
into additional algebraic equations (the so-called Lagrangian “augmented” formulation).
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Either in case of DAE or ODE numerical solutions1,4, the lagrangian formulation requires
the computation of the constraint’s jacobians, as well as other complex terms resulting from
the differentiation of constraint equations with respect to time and generalized coordinates.

Performing a numerical differentiation to obtain jacobians and the above mentioned terms,
a computational overhead may take place, especially in the circumstance of complex spatial
mechanisms with many couplings.

On the other hand, an analytical formulation of jacobians could be accomplished off-line
(either with automatic symbolic differentiation or by hand) in order to improve speed and
precision, but this method would lose generality, in the sense that each type of constraint
would need its own analytical differentiation. Therefore it would be interesting to develop a
method to get the analytical derivation of constraints, which is either fast and general in its
application, comprehending a wide class of holonomic spatial constraints into a compact
formulation.

Thus, we created a general-purpose constraint equation (“lock” equation) which imposes a
condition of mutual position and rotation between two reference frames belonging to rigid
bodies, where both position and rotation can be expressed in rheonomic (time-dependant)
terms. Consequently we obtained a wide class of spatial couplings and actuators, simply by
suppressing some of the six constraints of this “lock”  formulation, and by providing adequate
motion laws when needed.

The choice of quaternions as rotational coordinates rigid bodies let us work out the
analytical derivation of such “lock” equation in a coherent and compact form, thank to the
handiness of the quaternion algebra.

2 OVERVIEW OF ROTATIONAL COORDINATES

For each body in the system, some kind of  coordinates are needed to represent the rotation
in three-dimensional space. Usually this task is accomplished via three angles (Eulero’s
angles, Cardano’s angles, HPB angles, etc.) which indicate the rotation of body’s frame about
absolute reference, through specific sequences of rotations about the three body’s axis.
Hence, the 3x3 matrix of rotation of a frame is a function of three angles a={ r,s,t}:

[ ]t)s,r,(][
��

= (1)

Among the most relevant problems concerned with whatever sets of three
parameters/angles7 , there’s the fact that all the corresponding inverse transformation a=
{ a,b,c} = f([ � ]) may exhibit some singularities. This means that there may be some
alignments of bodies where one of the three angles can’t be obtained, and passing near these
configurations may cause numerical difficulties as soon as such angular coordinates are used
in the formulation of equations.

Another way to represent the rotation in space is the set of four Eulero’s parameters, which
is not subject to the problem of singularities. The four parameters q={ 4321 ϑϑϑϑ } are
expressed as a function of the rotation axis v and angle of rotation �  about v, as shown in
figure.
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The formulation of the four parameters is the following:������=
2
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2
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θϑ (2 a,b)

������=
2

sinv y2
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2

sinv z3

θϑ (2 c,d)

The matrix [� ] can be obtained as a function of the above parameters1:
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and the inverse transformation q=f([ � ]), which is not prone to singularities, can be obtained as
well5.

3 QUATERNIONS

Sir William Hamilton developed quaternion algebra in 1843, after long researches on
hypercomplex numbers9. Since then, quaternions have been widely used in mechanics,
because they can easily represent rotations of reference frames in space2,5 as soon as a
correspondence between them and the four Eulero’s parameters is built.

Before developing our multibody equations, we must introduce some basic quaternion
algebra.

Quaternions are four-dimensional hypercomplex numbers, with one real part an three
imaginary parts:

  kjiq dcba +++= (4)

{ }31,ℑℜ∈q

where  i2 = j 2 = k2 = -1   , ij = k ,  ji = -k ,  with cyclic permutation i →→→→ j →→→→ k →→→→ i .
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A quaternion can be written either in its four-dimensional vectorial form

{ }T
3210 qqqq=q (5)

or in its scalar / imaginary-vectorial notation [s,v], that is:

q = [s, v]  =  s + vx i + xy j  + vz k (6)

Using the above mentioned notation, some interesting rules can be enunciated.
The conjugate q’ of a quaternion comes from the quaternion q where the sign of the vectorial-
imaginary part has been changed:

[ ]vq ,s=       [ ]vq −= ,s'  (7)

The euclidean norm of the quaternion q is defined as follows:

( ) 2/12
3

2
2

2
1

2
0 qqqq +++=q (9)

and a quaternion whose norm equals one is called unit quaternion.
The product between two quaternions is given by the following formula:

( )211221212121 ss,ss vvvvvvqq ×++−= (10)

Note that quaternion product is non-commutative, as it can be seen from the vectorial part of
the formula, where a cross-product between the two imaginary-vectorial parts is performed.
A so-called  pure quaternion has only the imaginary part:

[ ]vq ,0=

Now we can write the four dimensional vector of Eulero’s parameters as a quaternion:
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    $           q = (s, v )  = ( cos (ϑ/2) , n sin (ϑ/2)  ) (11)

where ϑ represents the angle of rotation about the axis n .
From formulae (2 a,b,c,d), with some trigonometric calculus, one can find that only

quaternions with unitary euclidean norm can be valid sets of Eulero’s parameters, that is, if q
is  a quaternion which represent a rotation of a frame in space, via four Eulero parameters,
then

1=q (12)

This means that Elero’s parameters lies on the hyper-sphere of unit radius in the space of
quaternions.
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Now, given that Eulero’s parameters can be represented via quaternions, we can use
quaternion algebra in order to handle rotations of reference frames.
In detail, let assume the following hypothesis:

- O1 and W are two reference frames with arbitrary rotation,
- qo1,w   is the quaternion which describes the rotation of O1 respect to W,  and q’ o1,w is its

conjugate.
- pp-o1,o1   is a pure quaternion where the vectorial-imaginary part is built with the position

vector of the point P respect to the reference O1, in the coordinate system of O1, that is
pp-o1,o1 = [0, Po1]

- pp-w,w   is a pure quaternion where the vectorial-imaginary part is built with the position
vector of the point P respect to the reference W, in the coordinate system of W, that is   pp-

w,w = [0, Pw]

One could demonstrate the following property 5,9 :

w,1o1o,1opw,1ow,wp 'qpqp ⋅⋅= −− (13)

where quaternion product (eq.10) is used to obtain the same result of the usual alignment
transformation with linear algebra:

[ ] 1o,1opw,1ow,wp −− Λ= PP (14)

where P is the three-dimensional vector of point position and [% ] is the 3x3 rotation matrix.
It is interesting to observe that, whenever a quaternion q represents a rotation, its conjugate

q’  represent the rotation in the opposite direction, therefore the inverse alignment-
transformation

[ ] w,wp
T

w,1o1o,1op −− Λ= PP (15)

is simply obtained by conjugating the q quaternions of eq.13, that is:

w,1ow,wpw,1o1o,1op ' qpqp ⋅⋅= −− (16)

An useful side note is the following: if q is a rotation quaternion, the result of the
multiplication by its conjugate is qq’  ={1,0,0,0} , which represent no rotation at all, in
agreement with the fact that two rotations on the same axis but  with opposite direction lead to
no rotation at all.

Another interesting property is the concatenation of quaternion products to express
concatenations of rotations (that is, coordinate transformation of points in a chain of reference
frames). Say [% o1,w] , [ % o2,o1] and [% o1,w]  are the relative rotation matrices of  three references
01, 02, 03 in a chain of cartesian references W-O1-O2-O3, then:

[ ][ ][ ] 3o,3op2o,3o1o,2ow,1ow,wp −− ΛΛΛ= PP (17)



A. Tasora, P.Righettini.

6

can be expressed with quaternion algebra by way of the following multiplication:

( )( ) w,1o1,2o2,3o1o,1op2o,3o1o,2ow,1ow,wp ''' qqqpqqqp ⋅= −− (18)

that is, taking advantage of the associative property of quaternion multiplication:

( ) ( )w,1o1,2o2,3o1o,1op2o,3o1o,2ow,1ow,wp ''' qqqpqqqp −− = (19)

hence, in general for a chain of n cartesian references,

chain1o,1opchainw,wp 'qpqp ⋅⋅= −−     with    ( )1n,n1i,iw,1ochain ...... −− ⋅⋅⋅⋅= qqqq (20)

Note that the product of quaternions with unitary norm results in a quaternion with unitary
norm, thus still belonging to the subset of Eulero’s parameters.

Also, it is common knowledge that the order of rotation transformations is non-
commutative, just like the quaternion multiplication is a non-commutative operation (see
equation 20).

Among other interesting properties of quaternion algebra applied to mechanics, there is the
following relation, which obtains the time derivative of a rotation quaternion once the angular
speed  vector is known 5:

w,1ow,1ow,1o 2

1
qwq ⋅=

&
       with    [ ]w,1ow,1o ,0 ωωωω=w      (21)

where the pure quaternion wo1,w is built with the three-dimensional vector ' o1,w , the angular
speed of reference O1 respect to reference W, expressed in the coordinate system of W.

Also, the second time derivative can be obtained as well13, if the angular acceleration
vector (  is known, as expressed in the coordinate system W:

w,1ow,1ow,1o 2

1
qaq ⋅=

))
       with    [ ]w,1ow,1o ,0 αααα=a (22)

4 CONSTRAINTS  IN DYNAMICS AND KINEMATICS

In a multibody system based on cartesian coordinates, all constraints equations are coupled
to the differential dynamical equations, resulting into a DAE system.
Constraints can be represented with a vector of equations of the type:

0qC =)t,( (23)

The dependence from coordinates q means that the constraints are holonomic (also known as
“geometric” constraints), and the dependence from time –if any- is accountable of the
definition rheonomic1,3.

An easy and common way to solve this kind of system is to reduce it to an ODE ( a set of
ordinary differential equations). This implies that equation 23 must be differentiated twice
with respect to time1,
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[ ]Cq t
*
q C  0+ = (24)

[ ] [ ] [ ]C C Cq qt qq tt
+ + + +
q q q C  0+ ⋅ + + =2 (25)

shortly     [ ] cqC Qq =
,,

      with     [ ] [ ]Q q q Cc qt qq ttC C=− ⋅ − −2 - - (26)

hence the ODE system:

[ ] [ ]
[ ] [ ] . /

0
12 3

+
+=. /

0
12 3⋅45
6789

sc

m

q

T
q ˆ

0C

CM

QQ

QQq

λλλλ

::
(27)

where [M] is the mass matrix (mostly diagonal), q are the generalized coordinates, Q;  is the
vector of generalized lagrangian forces, Qm is the vector of known inertial terms, Qs is the
vector of Baumgarte stabilizers which keep solutions on the C(q,t)=0 manifold as in complete
DAE methods6,  <  is the vector of Lagrangian multipliers, [Cq] is the jacobian of the constraint
equations, and Qc are the known terms of constraint equations, as in eq.26.

The calculus of the terms [Cq], Ct and Qc can heavily affect the speed of the simulation, so
it may prove useful to find a straightforward analytical formulation instead of merely getting
them with numerical differentiation.

5 CONSTRAINT EQUATIO NS

Let consider the generic circumstance of a constraint where all the six mutual degrees of
freedom of two rigid bodies are constrained with motion laws. These motion laws describe the
reciprocal motion and rotation of the two bodies,
so we must add two auxiliary reference frames on
them, as in figure 1, and we call them “markers”.

As shown in picture, the two bodies are labeled
O1 and O2,  while the respective markers are
labeled P and S.

For sake of generality, we suppose also that
markers may have their own motion laws with
respect to the parent bodies –if no laws are
provided, the markers move firmly with rigid
bodies-.

To set up this kind of link, thereafter
nicknamed as “lock constraint”, we must write the
equations that constraint the motion of marker P
(belonging to body O1) respect to the marker S
(belonging to body O2), in the coordinate system
of marker S.

These constraint equations can be split in the

O1

P

O2S

W

Figure 1: rigid bodies and markers
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translational and rotational parts, and must take into account the motion laws of relative
translation/rotation of  P respect to S, expressed in coordinate system of S, if any motion is
needed.

4.1 Translational constraint

This constraint is considered in a three-dimensional vectorial form, and expresses the
condition that the origin of  P marker must  follow a given trajectory respect to the S marker,
in the coordinate system of  S.

0qqC =−= ∆− S,SP (28)

being S,SP−q  the vector of markers’ relative position, and ∆q the imposed motion law, in xyz

space of S, that is )t(∆∆ = qq . Note: if 0q =∆ , the origins of P and S must superimpose.
By substituting the formulation of relative position P-S, one gets:

[ ] [ ] [ ]( ) [ ]( )( )C q u q u q= ⋅ ⋅ + ⋅ − + ⋅ −Λ Λ Λ Λ
∆S O

T

O

T

x
O

P x
O

S
O W O W, , ,2 2 1 21 2

(29)

where up and us are the positions of markers P and S about the coordinate systems of their
bodies O1 and O2, respectively, and may be function of time themselves (generally these are
constant).
Performing a differentiation with respect to time:= =>=

C q q 0= − =
−PS S ∆

(30)

where ?@? ( )q q
∆ ∆

= t  is the time derivative of the motion law.

Keeping in mind that the term A
,S

q
P S−

 is the relative speed of P about S, in S coordinates, after

some passages we get:

[ ] [ ] [ ] [ ] [ ] [ ]B B B B B
, , , , , ,

C q q q q= ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ −
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O
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(31)

From the previous equation we can get also the Ct term which may be needed in inverse-
kinematics procedures:

[ ] [ ] [ ] [ ] [ ]( )C q u u q
t S O
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O

T

x
S O
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O

T

O
p S
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E EFEGE
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∆2 2 2 2 1
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Performing a further differentiation with respect to time, we get:H H H HIH H
C q q 0= − =

−PS S ∆
(33)

where JKJ ( )q q
∆ ∆

= t  is the acceleration of the motion law (known, and imposed by the user),

while S,SP−qLL  is the relative acceleration of P about S. Knowing the formulation of such

acceleration, we get:

[ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ]

M M M M M M M M
M M M M M M M M, , , , , ,

, , , , , ,
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2 2

2
(34)

We must rework the previous equation in a form similar to eq.26, because the unknown terms
in eq. 27 are the accelerations of bodies. With some algebraic manipulations, both the angularN N
qϑ  and linear O Oqx  accelerations can be put into evidence.
Introducing QNA for sake of compactness,

[ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ]

Q q q q

q

NA S O

T

O

T

P S W S O
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Λ Λ Λ Λ Λ Λ

Λ Λ
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2
(35)

substituting the formulation of relative acceleration Q Q
,

q
P S W−

,

[ ] [ ] [ ]( )
[ ] [ ] [ ]( )

R R R RSR RTR R R R R R R R
R R R R R R R, , , ,

,

q q q q u u u

q u u u
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2

Λ Λ Λ

Λ Λ Λ
(36)

and remembering the following relations,

[ ] [ ]
U U

[ V ] [ ][ V ][ V ]Λ Λ Λ= +α ω ω    ,   [ ] [ ]
W W
α ⋅ = − ⋅u u αααα    and   [ ]αααα ==== Gl( ) X Xq qϑ ϑ⋅   (37)

we finally obtain:
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We still must manipulate the term [ ] [ ]Λ Λ
S O

T

O

T

P S W, ,2 2
⋅ ⋅

−
q  in order to put into evidence the

acceleration terms. In fact, remembering [ ] [ ]
^ ^

[ _ ] [ ][ _ ][ _ ]Λ Λ Λ= +α ω ω  and the properties of

hemisymmetric matrices, we get:
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In the previous equation, the acceleration terms can be put in evidence, thus getting  a formula

in the form of eq.26, that is  [ ]C
q c

j j
q Q=  .

Hence, introducing the vector which contains the angular and linear accelerations of both

bodies { }k k k klk kmk kmk k
, , , ,

q q q q qv
O O

x x

T

O W O W O W O W1& 2 1 1 2 2
= ϑ ϑ ,  we can write:

[ ] c2O&1OvqxC Qq =
nn

 (40)

where the jacobian [Cx q] is computed piecewise in the following way:

[ ] [ ] [ ] [ ] [ ][ ]
2Oqx

2xOqx
1Oqx

1xOqxqx CCCCC
ϑϑ

= (41)

given that each part of that jacobian can be easily recovered from equation 39:

[ ] [ ] [ ]T
2O

T
2O,S1xO

x
q

C ΛΛ+= (42 a)

[ ] [ ] [ ] [ ][ ][ ]1OP1O
T

2O
T

2O,S1O
x GlˆC

q
uΛΛΛ−=ϑ

(42 b)

[ ] [ ] [ ]T
2O

T
2O,S2xO

x
q

C ΛΛ−= (42 c)

[ ] [ ] [ ] [ ][ ][ ] [ ] [ ]{ } [ ]2OW,SP
T

2O
T

2O,S2OS2O
T

2O
T

2O,S2O
x GlGlˆC

q
⋅o
p

qqr
s

∧
ΛΛ+ΛΛΛ+= −quϑ

(42 d)

From eq.39 we get also the known term Qc :
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[ ] [ ][ ][ ][ ]
[ ] [ ] [ ][ ][ ] [ ] [ ]( )
[ ] [ ] [ ][ ][ ] [ ] [ ]( )
[ ] [ ] [ ]

  Q q

u u u

u u u

q

c
S O

T

O O O

T

x

S O

T

O

T

O O O
P

O
P

O
P

S O

T

O

T

O O O
S

O
S

O
S

S O

T

O

T

x
S O

T

O

P S W

P S W

= +

+ ⋅ + ⋅ + ⋅ +

− ⋅ + ⋅ + ⋅ +

+ +

−

−

Λ Λ

Λ Λ Λ Λ Λ

Λ Λ Λ Λ Λ

Λ Λ Λ Λ

,

,

,

, ,

,

,

2 2 2 2

2 2 1 1 1 1 1

2 2 2 2 2 2 2

2 2 2

2

2

2

ω ω

ω ω

ω ω

[ ] [ ] [ ]
[ ] [ ]

2 2 2

2 2

2

2

T

x
S O

T

O

T

x

S O

T

O

T

x

P S W P S W

P S W

q q

q q

− −

−

+ +

+ −

, ,

,

,

,

Λ Λ

Λ Λ ∆

(43)

Note: all the equations above require the knowledge ot the terms q qx x
P S W P S W− −, ,

, t  (relative

marker position and speed, in absolute reference W), which can be computed as follows:

[ ]( ) [ ]( )q q q q u q u
P S W

x x x
O

P x
O

S
P W S W O W O W−

−= = + ⋅ − + ⋅
, , , , ,1 21 2

Λ Λ (44)

[ ] [ ]( ) [ ] [ ]( )u uvuwu u uxu u u
, , , , ,

q q q q u u q u u
P S W

x x x
O

P
O

P x
O

S
O

S
P W S W O W O W−

−= = + ⋅ + ⋅ − + ⋅ + ⋅
1 21 1 2 2

Λ Λ Λ Λ (45)

4.2 Rotational constraint

This constraint introduces the condition that the P marker must rotate about the S marker,
with the motion law of rotation )t(∆∆ = ϑϑ qq   expressed in the coordinate system of  S.
This constraint is equivalent to the equation:

( )[ ] ( )[ ]Λ Λ
∆

q qϑ ϑ

T

P S
⋅ =

y
z
{{{{
|
}
~~~~− ,S

1 0 0

0 1 0

0 0 1

(46)

Given that rotations can be expressed  with quaternion multiplications, as described in
eq.13 and eq 14, we can translate the previous constraint in quaternion algebra:

C q q q 0= =−
⋅

−
−

ℜ
ϑ ϑ ϑ

∆
1

P S e,S
(47)

where the real quaternion eℜϑq ={1,0,0,0}T  expresses a null rotation just like the unitary

diagonal 3x3 matrix of  equation 46.
The term 1−

∆ϑq  is the inverse of the quaternion ∆ϑq  which comes from an imposed law of

rotation  )t(∆∆ = ϑϑ qq . Note: since it is an unitary quaternion, the inverse is the same as the

conjugate, ∆∆ =−
ϑϑ '1 qq , which is easy to compute (eq.7).

The term qϑ
P S S− ,

means the relative rotation of P about S, in coordinate system of S, expressed

in quaternion algebra. We can find that its expression is
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P1O2OSS,SP
11

ϑϑϑϑϑ qqqqq ⋅⋅⋅−
−−=   (48)

as long as  [ � P,S] = [ � S,O2]
T[ � O2,W]T[ � O1,W] [ � P,O1] . The quaternions Sϑq and Sϑq  are the

rotations of the two markers P and S about the frames of their bodies O1 and O2, and the
quaternions 1Oϑq  and 2Oϑq are the rotations of rigid bodies about the absolute frame W.

Introducing the above equation into the formulation of the constraint, we get:

C q q q q q q 0= =− − −
⋅ ⋅ ⋅ ⋅ −

ℜ
ϑ ϑ ϑ ϑ ϑ ϑ

∆
1 1 1

2 1S O O P e
(49)

Applying symbolic differentiation with respect to time, and knowing that �q 0ϑ
ℜ

=
e

, it turns

into � � �
� � �C q q q q q q q q q q

q q q q q q q q q q q q q q q

= + +

+ + +

− − − − − −

− − − − − − − − −

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ

ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ

∆ ∆

∆ ∆ ∆

1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

2 1 2 1

2 1 2 1 2 1

S O O P S O O P

S O O P S O O P S O O P

(50)

From this result, we can extract also the term Ct which is often used for inverse kinematics:

C q q q q q q q q q q

q q q q q
t S O O P S O O P

S O O P

= + +

+

− − − − − −

− − −

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

� �
�ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ

ϑ ϑ ϑ ϑ ϑ

∆ ∆

∆

1 1 1 1 1 1

1 1 1

2 1 2 1

2 1

(51)

Performing a further differentiation with respect to time, we get:

P1O2OS

P1O2OSP1O2OS

P1O2OSP1O2OS

P1O2OSP1O2OS

P1O2OSP1O2OS

P1O2OSP1O2OS

P1O2OSP1O2OS

P1O2OSP1O2OS

111

111111

111111

111111

111111

111111

111111

111111

2

22

2

22

2

22

2

ϑϑϑϑϑ

ϑϑϑϑϑϑϑϑϑϑ

ϑϑϑϑϑϑϑϑϑϑ

ϑϑϑϑϑϑϑϑϑϑ

ϑϑϑϑϑϑϑϑϑϑ

ϑϑϑϑϑϑϑϑϑϑ

ϑϑϑϑϑϑϑϑϑϑ

ϑϑϑϑϑϑϑϑϑϑ

qqqqq

qqqqqqqqqq

qqqqqqqqqq

qqqqqqqqqq

qqqqqqqqqq

qqqqqqqqqq

qqqqqqqqqq

qqqqqqqqqqC

�� ���� ���� ���� ���� ���� ���� ������

⋅⋅⋅⋅∆

⋅⋅⋅⋅∆⋅⋅⋅⋅∆

⋅⋅⋅⋅∆⋅⋅⋅⋅∆

⋅⋅⋅⋅∆⋅⋅⋅⋅∆

⋅⋅⋅⋅∆⋅⋅⋅⋅∆

⋅⋅⋅⋅∆⋅⋅⋅⋅∆

⋅⋅⋅⋅∆⋅⋅⋅⋅∆

⋅⋅⋅⋅∆⋅⋅⋅⋅∆

−−−

−−−−−−

−−−−−−

−−−−−−

−−−−−−

−−−−−−

−−−−−−

−−−−−−

+
+++

+++
+++

+++
+++

+++
++=

(52)

The previous expression involves 60 quaternion products. However it must be pointed out
that, in most situations, such equation can be computed really fast: many  of its addenda can
be simplified if the markers P and S do not have their own motion laws about O1 and O2 (that
is, if they are just fixed to the respective bodies, terms like Sϑq� , Sϑq�� , Pϑq� and Pϑq��  are null

quaternions, thus leading to a much easier formulation of  C ).
Further simplifications can be performed when no time-dependant rotations are imposed

between P and S, hence ∆ϑq� and ∆ϑq�� are null as well, and just three addenda remain in eq.52.
Now, in order to put into evidence the body-acceleration terms, we must manipulate the

equation with some algebra, as we already did for the linear constraint.
First of all, we group all the known terms into Qc :
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P1O2OS

P1O2OSP1O2OS

P1O2OSP1O2OS

P1O2OSP1O2OS

P1O2OSP1O2OS

P1O2OSP1O2OS

P1O2OSP1O2OS

111

111111

111111

111111

111111

111111

111111

22

22

22

2

22

2c

ϑϑϑϑϑ

ϑϑϑϑϑϑϑϑϑϑ

ϑϑϑϑϑϑϑϑϑϑ

ϑϑϑϑϑϑϑϑϑϑ

ϑϑϑϑϑϑϑϑϑϑ

ϑϑϑϑϑϑϑϑϑϑ

ϑϑϑϑϑϑϑϑϑϑ

qqqqq

qqqqqqqqqq

qqqqqqqqqq

qqqqqqqqqq

qqqqqqqqqq

qqqqqqqqqq

qqqqqqqqqqQ

�� ���� ���� ���� ���� ���� ����

⋅⋅⋅⋅∆

⋅⋅⋅⋅∆⋅⋅⋅⋅∆

⋅⋅⋅⋅∆⋅⋅⋅⋅∆

⋅⋅⋅⋅∆⋅⋅⋅⋅∆

⋅⋅⋅⋅∆⋅⋅⋅⋅∆

⋅⋅⋅⋅∆⋅⋅⋅⋅∆

⋅⋅⋅⋅∆⋅⋅⋅⋅∆

−−−

−−−−−−

−−−−−−

−−−−−−

−−−−−−

−−−−−−

−−−−−−

−
+−−
+−−
+−−

+−−
+−−

+−−=

(53)

Then we have:

q q q q q q q q q q Qϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ ϑ
∆ ∆
− − − − − −

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅+ =1 1 1 1 1 1

2 1 2 1S O O P S O O P
c

� � � �
(54)

Quaternion products can be written also in form of linear algebra, that is:

q1  q2 =  (s1s2 - v1v2,    s1v2 + s2v1 + v1 x v2 )

q1  q2 = 21 qq ⋅������ + (55)

where we used the 4x4 matrix14:

��
��
�

�
��
��
�

�

++−+
−+++
+−++
−−−+

=������ +
0123

1032

2301

3210

qqqq

qqqq

qqqq

qqqq

q (56)

Since quaternion product is non-commutative, q1  q2 12 qq ⋅������≠ +
, anyway we can write:

q1  q2 = 21 qq ⋅������ +  = 12 qq ⋅������ −  (57)

where we introduced another 4x4 matrix14,

��
��
�

�
��
��
�

�

+−++
++−+
−+++
−−−+

=������ −
0123

1032

2301

3210

qqqq

qqqq

qqqq

qqqq

q (58)

Thanks to the previous formula, we can transform equation 54 into:

cP1O2OSP1O2OS
111111 Qqqqqqqqqqq =������������������������+������������������ ⋅

+
⋅

+
⋅

+
⋅∆

+
⋅⋅

+
⋅

+
⋅∆

+
−−−−−−

ϑϑϑϑϑϑϑϑϑϑ      (59)
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Using the property of eq.57, we can move the acceleration terms to the right of each addenda:

{ } c1OP2OS2OP1OS
111111 Qqqqqqqqqqq =⋅¡¢£¤¥¦¡¢£¤¥¦¡¢£¤¥¦¡¢£¤¥¦+⋅¡¡¢

£
¤¤¥¦ −¡¢£¤¥¦¡¢£¤¥¦ −

⋅
+

⋅
+

⋅∆

+
⋅⋅⋅

+
⋅∆

+
−−−−−−

ϑϑϑϑϑϑϑϑϑϑ §§§§ (60)

However, in the first addendum we do not see O2 body’s acceleration, but rather its conjugate.
This problem is solved in a straightforward way, as soon as the conjugate of a quaternion will
be expressed by means of linear algebra:

q q= ⋅
±ℑ

−[ ]χ 1 (61)

where we introduce a new matrix

[ ]χ
±ℑ

=
−

−
−

¨

©
ªªªª

«

¬
­­­­

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

(62)

Now we can readily write:

{ } [ ] c1OP2OS2OP1OS
11111 Qqqqqqqqqqq =⋅®¯°±²³®¯°±²³®¯°±²³®¯°±²³+⋅⋅®®¯

°
±±²³ −®¯°±²³®¯°±²³ −

⋅
+

⋅
+

⋅∆

+
⋅ℑ±⋅⋅

+
⋅∆

+
−−−−−

ϑϑϑϑϑϑϑϑϑϑ χ ´´´´ (63)

Introducing the vector which contains the angular and linear accelerations of both bodies

{ }µ µ µ µlµ µmµ µmµ µ
, , , ,

q q q q qv
O O

x x

T

O W O W O W O W1& 2 1 1 2 2
= ϑ ϑ ,  we can write:

[ ] c2O&1OvqC Qq =
¶¶

ϑ  (64)

where the jacobian [Cq] is computed piecewise in the following way:

[ ] [ ] [ ] [ ] [ ][ ]
2Oq2xOq1Oq1xOqq CCCCC

ϑ
ϑϑ

ϑ
ϑϑϑ = (65)

and each part of that jacobian can be easily obtained from equation 63 (note that two matrices
are null, since no linear acceleration terms appear in eq.63):

[ ] ]0[C
1xOq =ϑ (66)

[ ] ·¸¹º»¼·¸¹º»¼·¸¹º»¼·¸¹º»¼= −
⋅

+
⋅

+
⋅∆

+
−−−

P2OS1Oq
111C ϑϑϑϑ

ϑ
ϑ qqqq (67)

[ ] ]0[C
2xOq =ϑ (68)

[ ] { } [ ]ℑ±⋅⋅
+

⋅∆

+
⋅½½¾
¿

ÀÀÁ
Â

−½¾¿ÀÁÂ½¾¿ÀÁÂ= −− χϑϑϑϑ
ϑ

ϑ P1OS2Oq
11C qqqq (69)
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Furthermore, the term Qc is:

P1O2OS

P1O2OSP1O2OS

P1O2OSP1O2OS

P1O2OSP1O2OS

P1O2OSP1O2OS

P1O2OSP1O2OS

P1O2OSP1O2OS

111

111111

111111

111111

111111

111111

111111

22

22

22

2

22

2c

ϑϑϑϑϑ

ϑϑϑϑϑϑϑϑϑϑ

ϑϑϑϑϑϑϑϑϑϑ

ϑϑϑϑϑϑϑϑϑϑ

ϑϑϑϑϑϑϑϑϑϑ

ϑϑϑϑϑϑϑϑϑϑ

ϑϑϑϑϑϑϑϑϑϑ

qqqqq

qqqqqqqqqq

qqqqqqqqqq

qqqqqqqqqq

qqqqqqqqqq

qqqqqqqqqq

qqqqqqqqqqQ

ÃÃ ÃÃÃÃ ÃÃÃÃ ÃÃÃÃ ÃÃÃÃ ÃÃÃÃ ÃÃÃÃ

⋅⋅⋅⋅∆

⋅⋅⋅⋅∆⋅⋅⋅⋅∆

⋅⋅⋅⋅∆⋅⋅⋅⋅∆

⋅⋅⋅⋅∆⋅⋅⋅⋅∆

⋅⋅⋅⋅∆⋅⋅⋅⋅∆

⋅⋅⋅⋅∆⋅⋅⋅⋅∆

⋅⋅⋅⋅∆⋅⋅⋅⋅∆

−−−

−−−−−−

−−−−−−

−−−−−−

−−−−−−

−−−−−−

−−−−−−

−
+−−
+−−
+−−

+−−
+−−

+−−=

(70)

4.3 Complete “lock” constraint

If we consider the complete “lock” constraint, which includes both the constraint on mutual
translation and mutual rotation of the markers P and S, we get a jacobian matrix which is built
by stacking the two jacobians of eq.41 and eq.65, one over the other:

[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] ÄÄÅ

Æ
ÇÇÈÉ=

2Oq2xOq1Oq1xOq

2Oqx
2xOqx

1Oqx
1xOqx

lockq CCCC

CCCC
C

ϑ
ϑϑ

ϑ
ϑϑ

ϑϑ
(71)

The submatrices of the first row (referring to the constraint on translations) are expressed by
eq.42 and following, while the sub-matrices of the second row (pertaining to the rotational
constraint) are expressed by eq.66 and following.

This jacobian has 7 rows (descending from 3 conditions on mutual movement plus 4
conditions of the quaternion equation for rotation) and 14 columns (because both body frames
have 7 coordinates: 3 cartesian and 4 for the quaternion representing the rotation).

However, classical mechanics teaches that six equations are enough to restraint the relative
degrees of freedom of two rigid bodies, while our jacobian has seven rows: one more than the
strictly needed.

This happens because one of the four constraints descending from the quaternion equation
is  redundant. In fact, if we had already introduced  in the DAE system N constraints about the
unit length of the rotation quaternions of the N
rigid bodies, the product of eq.48 should by sure
return a quaternion of unit length: given 3 free
components, the fourth would follow immediately
because of this unit-length restraint.

With this assumption, one of the four
conditions expressed by the quaternion constraint
is redundant and can be eliminated13, thus getting
a jacobian with the six rows (3+3) which are

Figure 2: aspect of the 7x14 jacobian  matrix
of the complete “lock” constraint
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strictly needed.
Hence the resulting “lock” formulation spawn a vector of six restraint equations, the first

three coming from the cartesian constraint of eq28, and the other three coming from three
components of the quaternion-based rotational constraint of eq.49 (an opportune choice is  to
select the vectorial-imaginary part):

{ }{ }T
Xlock θCCC ℑ=     ,   { }T

kjizyxlock CCCCCC θθθ=C (72)

In a similar fashion, we get also lockCÊ , lockCÊÊ , lockcQ , locktC .

6 OTHER CONSTRAINTS

Heretofore we introduced the lock formalism which represents constraints where all the 6
relative degrees of freedom of two bodies are restrained, occasionally with motion laws.

If we suppress one or more of the 6 constraint equations, some reciprocal movements are
left free and we can create different types of joints with enough physical interpretation
(revolute joints, prismatic guides, spherical joints, etc.).

Also, if we provide adequate motion laws, we can use the same lock formalism to simulate
engines, linear actuators, assignment of trajectories, and so on.

From a programmer’s  point of view, this means that for all the links in the multibody
system the “lock” formulation is computed to get the complete [Cq] lock, QClock, Clock, Ct lock

vectors and matrices, but only selected rows of the jacobian (and the corresponding elements
in the  QC lock, Clock, Ct lock  vectors) are used and pasted into the DAE system.

In this paper, as practical examples,  we take into account only the most meaningful joints
among all the 64 possible variants which can be obtained by suppressing different equations
of the lock formulation.

6.1 Spherical joint

This joint can be obtained, of course, with the simple suppression of all the
3 constraints about mutual rotation; only the cartesian Cx,Cy,Cz constraints are
left. The resulting jacobian matrix has only three rows, extracted from row
1,2,3 of the [Cq] lock matrix of eq.71. Also the vectors Qc, C, Ct have only three
elements.

6.2 Prismatic joint

This joint means the suppression of only one of the three cartesian
constraints, for example the elimination of the Cz constraint allows the shifting
of the marker P along the Z axis of marker S (hence the Z axis of S would be
used to indicate the direction of the prismatic joint). On the other hand, all the
three rotational constraints are kept active. The resulting jacobian matrix has
five rows, extracted from rows 1,2,4,5,6 of the [Cq] lock matrix of eq.71
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6.3 Revolute joint

The revolute joint implies the superposition of marker’s origins, so all three
cartesian constraints Cx,Cy,Cz  are kept active. Assuming that this joint allows
the rotation of marker P about axis Z of marker S, one of the three rotational
constraints must be eliminated. It is easy to find that, if a rotation is performed
about versor Z, the X and Y components of the vectorial part of the resulting
quaternion are null. Hence, the two active rotational constraints are CË i and CË j , while CË k is
not taken into consideration.
The jacobian matrix has five rows extracted from row 1,2,3,4,5 of the [Cq] lock matrix.

6.4 Cylindrical joint

This joint is similar to the revolute joint, but allows also the shifting of
marker P respect along the Z axis of marker S . Shifting in X and Y is
forbidden, and  only rotation about Z is allowed.
The jacobian matrix has four rows, extracted from row 1,2,4,5 of the [Cq] lock

matrix.

6.5 Engines, motors

A spinning engine can be represented by all the 6 constraint equations of the “lock”
formulation, where a user-defined motion law has been defined for the mutual rotation of the
two markers P and S, thus computing all formulas with the specified )t(∆∆ = ϑϑ qq  function
and its derivatives.

Otherwise, ∆ϑq  could be kept constant and the motion law could be applied to the terms

)t(PP ϑϑ qq =  or )t(SS ϑϑ qq = , which represent the rotations of markers respect to their rigid

bodies.

6.5 Other examples

In table 1 we report some
examples of joints which can
be easily obtained from the
“ lock” formalism. The “X”
symbol means ‘active
constraint equation’.
Note that constraining just one
of the three  rotational degrees
results in a joint which
transmits rotation in a
homokinetic fashion, like the
Birfield or Rzeppa devices.

Cx Cy Cz CÌ i CÌ j CÌ k
Bolt / glue / fastener / nail / etc..x x x x x x
Point on line x x
Point on plane x
Plane on plane x x x
Revolute x x x x x
Cylindrical joint x x x x
Angular alignment x x x
Oldham joint x x x x
Prismatic joint x x x x x
Birfield or Rzeppa Joint x x x
homokinetic joint x x x x

Table 1: some examples of joints inherited from the “lock” constraint
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CONCLUSIONS

The adoption of quaternion as rotational coordinates allows a compact and versatile
formulation of constraint equations. Taking advantage of quaternion algebra, we developed  a
formalism which exploits high generality, since it deals with the circumstance of constraints
between markers where rheonomic laws can be assigned either to the mutual
translation/rotation, either to the translation/rotation of markers respect to parent bodies.
Henceforth, many special purpose joints can be obtained from that single vectorial
formulation, just by suppression of constraint scalar equations, and by providing adequate
motion laws when  a rheonomic behavior is needed.

We accomplished the analytical derivations of the constraint equations in order to avoid
numerical computation of jacobians, thus getting superior speed and precision.

Despite the apparent complexity of the analytical derivations, most formulas can be
simplified on the basis of the features used in the joint (presence of motion laws, etc.) and run-
time optimizations can take place during numerical calculus of equations.

These theoretical results fit well into an object-oriented approach to the programming of
multibody software. We developed in this sense our multibody software CHRONO, which
indeed shows high speed of calculus and stimulates further research in this field.
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