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Abstract. This work deals with an approach to the multibody simulation based on the
Lagrangian “augmented” formulation, where the adoption of quaternions as rotational
coordinates can lead to interesting results. The properties of quaternion algebra let us obtain
a single analytical general-purpose formulation of constraint’s jacobians which can be used
for a wide class of holonomic joints, like spherical joints , revolute joints, cylindrical joints,
‘point on line’ and many others, up to 64.

Despite the apparent complexity of this analytical approach, the formulas has been arranged
in an optimal way which allows easy run-time simplifications and fast, efficient calculus.
Moreover, given that most constraints can be represented with a single formulation, the
method fits well into an object-oriented approach. We implemented a multibody software in
C++ language on the basis of these theoretical results.

1 INTRODUCTION

The most common classification among multibody system formulations relies on the type
of coordinates adopted in the equations. Using a maximal set of coordinates, as in our method,
all the translational and rotational coordinates of rigid bodies are taken into account in the
differential dynamical equations, while all the constraints between rigid bodies are translated
into additional algebraic equations (the so-callegrangian “augmented” formulation
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Either in case of DAE or ODE numerical solutiorl$, the lagrangian formulation requires
the computation of the constraint’s jacobians, as well as other complex terms resulting from
the differentiation of constraint equations with respect to time and generalized coordinates.

Performing a numerical differentiation to obtain jacobians and the above mentioned terms,
a computational overhead may take place, especially in the circumstance of complex spatial
mechanisms with many couplings.

On the other hand, an analytical formulation of jacobians could be accomplished off-line
(either with automatic symbolic differentiation or by hand) in order to improve speed and
precision, but this method would lose generality, in the sense that each type of constraint
would need its own analytical differentiation. Therefore it would be interesting to develop a
method to get the analytical derivation of constraints, which is either fast and general in its
application, comprehending a wide class of holonomic spatial constraints into a compact
formulation.

Thus, we created a general-purpose constraint equation (“lock” equation) which imposes a
condition of mutual position and rotation between two reference frames belonging to rigid
bodies, where both position and rotation can be expressed in rheonomic (time-dependant)
terms. Consequently we obtained a wide class of spatial couplings and actuators, simply by
suppressing some of the six constraints of this “lock” formulation, and by providing adequate
motion laws when needed.

The choice of quaternions as rotational coordinates rigid bodies let us work out the
analytical derivation of such “lock” equation in a coherent and compact form, thank to the
handiness of the quaternion algebra.

2 OVERVIEW OF ROTATIONAL COORDINATES

For each body in the system, some kind of coordinates are needed to represent the rotation
in three-dimensional space. Usually this task is accomplished via three angles Eulero’s
anglesCardano’s angles, HPB angles, etc.) which indicate the rotation of body’s frame about
absolute reference, through specific sequences of rotations about the three body’s axis.
Hence, the 3x3 matrix of rotation of a frame is a function of three arsgiéss,t}:

[A] =[A(r,s,)] 1)

Among the most relevant problems concerned with whatever sets of three
parameters/anglésthere’s the fact that all the corresponding inverse transformation a=
{a,b,c} = f([A]) may exhibit some singularities. This means that there may be some
alignments of bodies where one of the three angles can’t be obtained, and passing near these
configurations may cause numerical difficulties as soon as such angular coordinates are used
in the formulation of equations.

Another way to represent the rotation in space is the set of fulero’s parameters, which
is not subject to the problem of singularities. The four parameters{ 1 J. s Ja}are
expressed as a function of the rotation axig and angle of rotation § about v, as shown in
figure.
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The formulation of the four parameters is the following:

5, = co{g) g = vxsin(g) (2a,b)
2 2

(@ (8
d, = vysm(E) Jy = VZS”{EJ (2c,d)
The matrix [A] can be obtained as a function of the above paranfeters
@)z +@)?-1 2A98,-99,)  2A98+99,)
[Ale 20.8,+28,8,) @) +@)?]-1  28,8,-9,9,) 3)
2(7-91’93 - ’90’92) 2(7-927-93 + 7-907-91) 2[(7-90)2 + (’93)2] -1

and the inverse transformatigrf([A]), which is not prone to singularities, can be obtained as
well.

3 QUATERNIONS

Sir William Hamilton developed quaternion algebra in 1843, after long researches on
hypercomplex numbers Since then, quaternions have been widely used in mechanics,
because they can easily represent rotations of reference frames in spateas soon as a
correspondence between them and the Exlero’s parameters is built.

Before developing our multibody equations, we must introduce some basic quaternion
algebra.

Quaternions are four-dimensionahypercomplex numbers, with one real part an three
imaginary parts:

g=a+bi +c +dk 4)

qo{ot, 0%

wherei®=j>=k*=-1 ,ij=k, ji=-k, with cyclic permutation - j - k — i .
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A guaternion can be written either in its four-dimensioredtorial form

q :{qo a. 4. qs}T %)
or in its scalar / imaginaryvectorialnotation [sy], that is:
q=[s,v] = s+Wwi+Xxyj+VvK (6)

Using the above mentioned notation, some interesting rules can be enunciated.
Theconjugateq’ of a quaternion comes from the quaternigmhere the sign of theectorial-
imaginary part has been changed:

g=[sv] a=[s-v] (7)

Theeuclidean nornof the quaterniom is defined as follows:

lof = (0.2 + % +a,° + 0,7 ©)

and a quaternion whose norm equals one is calfgidquaternion
Theproductbetween two quaternions is given by the following formula:

4.9, = (5152 —V,V, , §V,*SV,tV, sz) (10)

Note that quaternion product is non-commutative, as it can be seen fromekorial part of
the formula, where a cross-product between the two imagwentprial parts is performed.
A so-called pure quaterniorhas only the imaginary part:

a=[ov]
Now we can write the four dimensional vectortailero’s parameters as a quaternion:

o> g=(s,v) =(cos @/2),nsin ©/2) ) (11)

whered represents the angle of rotation about the axis

From formulae (2 a,b,c,d), with some trigonometric calculus, one can find that only
quaternions with unitarguclidean norm can be valid sets Btilero’s parameters, that is, f
is a quaternion which represent a rotation of a frame in space, via foldulero parameters,
then

ol =1 (12)

This means thatElero’s parameters lies on the hyper-sphere of unit radius in the space of
guaternions.
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Now, given that Eulero’s parameters can be represented via quaternions, we can use
guaternion algebra in order to handle rotations of reference frames.
In detail, let assume the following hypothesis:

01 and W are two reference frames with arbitrary rotation,

Jo1w IS the quaternion which describes the rotation of O1 respectto W, &gl wis its
conjugate.

Pp-o1,01 IS @ pure quaternion where theectorial-imaginary part is built with the position
vector of the point P respect to the reference O1, in the coordinate system of O1, that is
Pp-o1,01= [0, Poq]

Pp-ww IS @ pure quaternion where thevectorial-imaginary part is built with the position
vector of the point P respect to the reference W, in the coordinate system of W, tipat is
ww= [0, Py]

One could demonstrate the following propetty
pp—w,w =qol,w |])p—ol,ol |]:I'ol,w (13)

where quaternion product (eg.10) is used to obtain the same result of the usual alignment
transformation with linear algebra:

PP—W,W =|./\ ol,w JPp—ol,ol (14)

whereP is the three-dimensional vector of point position andlis the 3x3 rotation matrix.

It is interesting to observe that, whenever a quatergiogpresents a rotation, its conjugate
g’ represent the rotation in the opposite direction, therefore the inverse alignment-
transformation

Pp—ol,ol :[/\ ol,w ]T Pp—w,w (15)

is simply obtained by conjugating tlaequaternions of eq.13, that is:

pp—ol,ol :qlol,w mp—w,w I]:Iol,w (16)

An useful side note is the following: if g is a rotation quaternion, the result of the
multiplication by its conjugate is qq’ ={1,0,0,0} , which represent no rotation at all, in
agreement with the fact that two rotations on the same axis but with opposite direction lead to
no rotation at all.

Another interesting property is the concatenation of quaternion products to express
concatenations of rotations (that is, coordinate transformation of points in a chain of reference
frames). SayAoin] , [Ao20] @and [Ac1w] are the relative rotation matrices of three references
01, 02, 03 in a chain dfartesian references W-O1-02-03, then:

I:)p—w,w :l/\ ol,w l/\ 02,011/\ 03,02 ]Pp—03,03 (17)
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can be expressed with quaternion algebra by way of the following multiplication:

p p-w,w =q olw (q 02,01 (q 03,02p p-ol,0l |]ToS,Z h'oz,l)qlol,w (18)
that is, taking advantage of the associative property of quaternion multiplication:
Ppww = (q w020 03,02 )p p-olol (q'03,2 o219 01w ) (19)

hence, in general for a chain mtartesian references,
pp—w,w = qchain |])p—ol,ol |]:]Ichain Wlth qchain = (q olw D |]:]i,i—l D"Ijqn,n—l) (20)

Note that the product of quaternions with unitary norm results in a quaternion with unitary
norm, thus still belonging to the subsetteiilero’s parameters.

Also, itis common knowledge that the order of rotation transformations is non-
commutative, just like the quaternion multiplication is a non-commutative operation (see
equation 20).

Among other interesting properties of quaternion algebra applied to mechanics, there is the
following relation, which obtains the time derivative of a rotation quaternion once the angular
speed vector is knowh

. 1 .

qol,w ZEWOLW |]:]ol,w with Wol,w =|.O’ wol,w] (21)

where thepure quatermon wy; IS built with the three-dimensional vectan,; v, the angular

speed of reference O1 respect to reference W, expressed in the coordinate system of W.
Also, the second time derivative can be obtained as well®, if the angular acceleration

vectora is known, as expressed in the coordinate system W:

1

q olLw ==

2 aol,w El ol,w with aol,w =|.O’ a olw ] (22)

4 CONSTRAINTS IN DYNAMICS AND KINEMATICS

In a multibody system based @artesian coordinates, all constraints equations are coupled
to the differential dynamical equations, resulting into a DAE system.
Constraints can be represented with a vector of equations of the type:

C(q,t)=0 (23)

The dependence from coordinatgsneans that the constraints an@lonomic(also known as
“geometric” constraints), and the dependence from time —if any- is accountable of the
definition rheonomié=.

An easy and common way to solve this kind of system is to reduce it to an ODE ( a set of
ordinary differential equations). This implies that equation 23 must be differentiated twice
with respect to timg
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[CJg+C.=0 (24)
[CoJa +20Ca]g +[Caefg + Cu = 0 (25)
shortly [Ca§=Qc with Qc=-20Ca]q~[Casq—Cs (26)

hence the ODE system:

[c [o] | 1A [Q.+Q,
where [M] is the mass matrix (mostly diagonaly are the generalized coordinate®, is the
vector of generalizedagrangian forcesQn, is the vector of known inertial terms, Qs is the
vector of Baumgarte stabilizers which keep solutions onGfegt)=0 manifold as in complete
DAE method§ 2 is the vector of Lagrangian multiplier<;{] is thejacobian of the constraint
equations, an@. are the known terms of constraint equations, as in eq.26.
The calculus of the term<J,], C; and Q. can heavily affect the speed of the simulation, so

it may prove useful to find a straightforward analytical formulation instead of merely getting
them with numerical differentiation.

5 CONSTRAINT EQUATIO NS

Let consider the generic circumstance of a constraint where all the six mutual degrees of
freedom of two rigid bodies are constrained with motion laws. These motion laws describe the
reciprocal motion and rotation of the two bodies,
so we must add two auxiliary reference frames on
them, as in figure 1, and we call them “markers”.

As shown in picture, the two bodies are labeled
O1 and O2, while the respective markers are TA'

labeled P and S.

For sake of generality, we suppose also that
markers may have their own motion laws with
respect to the parent bodies —if no laws are
provided, the markers move firmly with rigid
bodies-.

To set up this kind of link, thereafter
nicknamed aslock constraint, we must write the
equations that constraint the motion of marker P
(belonging to body O1) respect to the marker S
(belonging to body O2), in the coordinate system W
of marker S.

These constraint equations can be split in the Figure 1: rigid bodies and markers

o1
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translational and rotational parts, and must take into account the motion laws of relative
translation/rotation of P respectto S, expressed in coordinate system of S, if any motion is
needed.

4.1 Translational constraint

This constraint is considered in a three-dimensionalvectorial form, and expresses the
condition that the origin of P marker must follow a given trajectory respect to the S marker,
in the coordinate system of S.

C=pss—0, =0 (28)

being g, ¢ the vector of markers' relative position, and, the imposed motion law, irkyz

space of S, thatig, =q,(t). Note: if g, =0, the origins of P and S must superimpose.
By substituting the formulation of relative position P-S, one gets:

c=[n] ] Ao, na]m) (oo, o]0, e

whereu, and us are the positions of markers P and S about the coordinate systems of their
bodies O1 and O2, respectively, and may be function of time themselves (generally these are
constant).

Performing a differentiation with respect to time:

c=¢,..-4,=0 (30)

PS-S

whereq, =, (t) is the time derivative of the motion law.
Keeping in mind that the terng,__ is the relative speed of P about S, in S coordinates, after
some passages we get:

C=[A] fna] moo no] PAo] e s r] ] e, -,

C= [/'\Sm]T [@/\02]T [é(qu +[/\Ol]up) - (qon +[/\02]Us)) +
S SR R A O O A B 31)
[r] ] o+ A [n o) (o, + Ao+ Jod) -,

From the previous equation we can get also th€; term which may be needed in inverse-
kinematics procedures:

C, =[As] B W, +[An] Eﬁ[/\oz]T[/\m]up - us) -q, (32)
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Performing a further differentiation with respect to time, we get:
C:qps—s_qA =0 (33)
where ¢, =4, (t) is the acceleration of the motion law (known, and imposed by the user),
while ¢, s is the relative acceleration of P about S. Knowing the formulation of such

acceleration, we get:
é - [/“\s,oz]T |:[]/\oz]T mp—s,w +2[As,02]T I:[]/\oz]T mp—s,w +2[/\s,02]T I:@/\oz]T mqp—s,w +
T . T T . T T T
+[/\S,02] I:[J/\oz] l]]P—S,W +2[/\S,02] I:[]/\oz] E:IP—S,W +[/\s,oz] I:[]/\oz] |]jp—s,w _qA

We must rework the previous equation in a form similar to eq.26, because the unknown terms
in eq. 27 are the accelerations of bodies. With some algebraic manipulations, both the angular
gs and linear(x accelerations can be put into evidence.

IntroducingQna for sake of compactness,
QNA :[/\s,oz] I:[J/\oz] mp—s,w +2[/\s,02] I:[]/\oz] mp—s,w +2[/\s,02] I:@/\02] mP—S,W +

. (35)
+2N,] TAL] @,

substituting the formulation of relative acceleratigp,, ,

(34)

-qp_s,w = qxpyw - qxs,W :(qxolw + [/"\01] (i |:‘?'[/-\01] (e +[/\Ol] I],]p) B

(6, #[A ] s+ 2 A s +[ A, =
and remembering the following relations,
[A]=[AllG1+ATGG) | [(]m=dlm and a=[Gl@)]|m  (37)
we finally obtain:
C=[Aen] [Aes] i +
RN 0 e s
o[Aaon o] me g e n, | m) 39)
]S ST VAV T8 [T S \ .
oo dn,
+Q, ~0s
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We still must manipulate the term [/\SOZ]T [@/\OZ]T @, ., in order to put into evidence the

acceleration terms. In fact, remembering[/"\] =[A][a] +[A][®][®] and the properties of
hemisymmetric matrices, we get:

| O |
C:[Asyoz] [/\02][0)02][0)02]] Fosm +[AS’°2] i_[[AOZ]TqP_S’W}J [ﬁGIoz] oo *
a1 T( Foun _[AM][UP][GlOl]q%LW * \ +
L S02] 02 L[/\m][wm][wm] [l + 2[/\01] (e + [/\01] ()
“In TIA T(qxoz,w _[AOZ][US][GIOZ]qSOZvW ¥ \ + (39)
el Bl n oo e 4n, e+ [a,, | wy
+ -/\S,OZ:T Aoz qup-s,w * Z[AS,OZ]T[AOZ]TqXP‘SvW +2[AS’°2]T[A02]TqXP_SW

+ 2[/\8,02] [/\02] O, g ~ 0o
In the previous equation, the acceleration terms can be put in evidence, thus getting a formula
in the form of eq.26, that is{Cq]q =Q, .

Hence, introducing the vector which contains the angular and linear accelerations of both

bodiesqv,,,, = {qxowijsOlquxoszqsosz}T, we can write:
[Cxq]q"omoz =Q. (40)
where thgacobian Cx ¢ is computed piecewise in the following way:
I.C"q] :uCXqu I.Cqugol [Cxqjxoz lCXq]gozl (41)
given that each part of thgcobian can be easily recovered from equation 39:
[Cxq ]XOI = +[/\s,oz]T [/\ 02]T (42a)
[Cxq]ml = _[/\s,oz]T [/\oz]T [A01][OP][G|01] (42 b)
[Cxq]xoz = _[/\s,oz]T[/\oz]T (42 c)
| O |
[Cxq ]502 = +[As,02]T [/\ 02]T [Aoz][as][Gloz] + [/\s,oz]-r {HAOZ]T q P—S,W} [ﬁG|02] (42 d)
|

From eq.39 we get also the known te@Qug:

10
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T
qx P-SW +

QC:[/\S,OZ]T (A Jwo] 0]
] [ (Ao s A e[, )+

~[Aea] Te] [ e[ 000e 000 e+ A, s [ A, i) + (43)
+[/\S‘02]T[/\02]qup_s’w + Z[As,oz]T[/\oz]qup-s,w + Z[As,oz]T[/\oz]qup_s,w +

+ Z[As,ole[/\oz]qup—s,w —0a

Note: all the equations above require the knowledge ot the termgx, _ .Gx, . (relative
marker position and speed, in absolute reference W), which can be computed as follows:

Opgw = O,y - O, :(qu,w +[/\01] Eup) —(qxosz +[/\02] ms) (44)
Ao, =G, G, :(qu,w +[Ay]me+[A,] ﬁup) —(qxosz A ms+[A)] Dus) (45)

4.2 Rotational constraint

This constraint introduces the condition that the P marker must rotate about the S marker,
with the motion law of rotatiorgs, =gs, (t) expressed in the coordinate system of S.
This constraint is equivalent to the equation:

1 00

’/\(QSA)]TEE/\(C]{)PS’S)]= 010 (46)

Given that rotations can be expressed with quaternion multiplications, as described in
ed.13 and eq 14, we can translate the previous constraint in quaternion algebra:

C=0 Z oQs =0 47

P-S,S Qs Oe

where the real quaterniongs_,={1,0,0,0} expresses a null rotation just like the unitary

diagonal 3x3 matrix of equation 46.

The term gs, is the inverse of the quaternion gs, which comes from an imposed law of
rotation qgs, =gs, (t) . Note: since it is an unitary quaternion, the inverse is the same as the
conjugategs, =q's,, which is easy to compute (eq.7).

The termgs . means the relative rotation of P about S, in coordinate system of S, expressed

in guaternion algebra. We can find that its expression is

11
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Udp-ss = Qss (090, Moo (q9p (48)

aslongas [ Apd =[ Asod [Aocawl [Aoww] [ Arof - The quaternions qssand gsg are the
rotations of the two markers P and S about the frames of their bodies O1 and 02, and the
quaternionsgs,, andqgs,, are the rotations of rigid bodies about the absolute frame W.

Introducing the above equation into the formulation of the constraint, we get:
C=0o, Gy Mo, o, Mo, -G, =0 (49)
Applying symbolic differentiation with respect to time, and knowing thafs _ =0, it turns
into
C=Q, Qs Go_, s, s, +Co, s o Mo, s, +

1 1 1 A 1

D W ) (50)
T0o, Qo Qo , oo, o, T o, s Qs , o, s, +Qs,

o g oG o, s o, oo,

From this result, we can extract also the te&Cpwhich is often used for inverse kinematics:
C, =G, Doy s, Do, o, + 0, oo o, o, oo, + (51)
0o, Qg Mo, oo, o,

Performing a further differentiation with respect to time, we get:

C= Gon Mdg MU9g, ooy Mop + 209, qsg (s, Mooy [Msp +
+209, Qs Udg, dey [Qop + 209, (sg g, Mooy Top +
+ 209, Q95 U35, ooy (qop + 0o, lsg Wog, ooy op +
+ 205, W95 A0, W90y 2p + 205, (055 oo, Bogy sp +
+ 205, @95 050, 90y 2p + o, o Hog, Moy Gsp +
+209, Qs Udg, dey (Qop + 209, (sg oo, Mooy Cop +
+s, W95 [U9g, Mooy [Mop + 209, Mo [Msg, 50 (sp +
+s, [Odg 095, o, Uop
The previous expression involves 60 quaternion products. However it must be pointed out
that, in most situations, such equation can be computed really fast: many of its addenda can

be simplified if the markers P and S do not have their own motion laws about O1 and O2 (that
is, if they are just fixed to the respective bodies, terms like s, Gs5, 49, and §s, are null

guaternions, thus leading to a much easier formulatio {f
Further simplifications can be performed when no time-dependant rotations are imposed
between P and S, hence, and ¢js, are null as well, and just three addenda remain in eq.52.
Now, in order to put into evidence the body-acceleration terms, we must manipulate the
equation with some algebra, as we already did for the linear constraint.
First of all, we group all the known terms in@ :

(52)

12
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QC = —0s, Wvs Moo, Mooy (A%p ~ 209, os oo, oo Aop +
= 2(9, os oo, Moy op =~ 209, o5 95, Yooy Gop +
= 2(9, os oo, Mooy 9p — U, g oo, Moo H9p +
=209, Q95 9o, Moy op =209, Mog 95, Yooy Gop +
=209, Q95 oo, Moy M9p 209, Mdg 95, Yooy Gop +
=209, og 9o, Moy Mop 209, Mdg Moo, Yooy Gop +
=09, Wsg [M9g; (9o Top

Then we have:

1 1 28 1 1 1

Qs, Qo s, o0, Qo + s, Qo Dqﬁ;z DC']aOl s, = Qc
Quaternion products can be written also in form of linear algebra, that is:

01 02 = (S1S2-V1Ve, SiVo+ SVi+ViXVa)

01 Q2= |:q1:| L4,
where we used the 4x4 mattix
tCo - —Q2 —QOs
+ +h +Qo —QOs +0Q2
{ } 02 +03 +Qo -
O3 —Q2 +r +Qo

+

Since quaternion product is non-commutatigre, g, # {qz} [4,, anyway we can write:

0r Q2= |:q1:|m2 = |:q2:|m1

where we introduced another 4x4 matfix
tCo - —Q2 —QOs
[T *tQo +Q03 —Q2
{q} 02 -0 +Qo +0
O3 +Q2 - +Qo

Thanks to the previous formula, we can transform equation 54 into:
|:q ’9Z:| E|:q ’9;:| E|:q '932:| Qs [sp + |:q ’93:| E|:q ’9;:| E|:q ’9(_312:| E|:q '901:| s =QC

13

(53)

(54)

(55)

(56)

(57)

(58)

(59)
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Using the property of eq.57, we can move the acceleration terms to the right of each addenda:

|:g] ‘9A1:| E|:a 1931:| E|:{QI901 Eqﬁp} [0, D+|:a ‘9A1:| E|:a 1931:| E|:a 19012:| E|:(i ‘9P:| (s, =QcC (60)

However, in the first addendum we do not see O2 body’s acceleration, but rather its conjugate.
This problem is solved in a straightforward way, as soon as the conjugate of a quaternion will
be expressed by means of linear algebra:

q=[x. 106" (61)
where we introduce a new matrix
1 0 0 O
_ 0 -1 0 O 62
[XiD] - 0 0 -1 0 ( )
0O 0 0 -1

Now we can readily write:

] o o s o o s} v =0 00

Introducing the vector which contains the angular and linear accelerations of both bodies

T
qvo;L&oz = {qXOLWqS Olquxoszqﬁ oz,w} , We can write:

[Coq v onsor = Q. (64)
where thgacobian Cq] is computed piecewise in the following way:
I.C&q ] :l_I_C’9q Jx01 |.C'9q Jgol |.C'9q Jxoz |.Cl9q ],902J (65)

and each part of thagacobian can be easily obtained from equation 63 (note that two matrices
are null, since no linear acceleration terms appear in €q.63):

s, |, =101 (66)
o, [ | e i | e o
|Cs, ., =101 (68)

.. (69)

(oo, = {a ﬂg} c{a «9;} EI:{qﬂol_Eqﬁp}

14



A. Tasora, P.Righettini.

Furthermore, the teriQc is:

QC = —0s, W9 Moo, Mooy (sp ~ 209, os oo, oo Aop +

=209, os 9o, Moy dp ~ 209, Mdg 95, Yooy Gop +

=209, os oo, Mooy 9p — s, Hog o, Moo H9p +

=209, Q95 9o, Mooy Udp ~ 209, Mog o5, Yooy Gop + (70)
=209, 95 oo, Moy M9p 209, Mdg 95, Yooy Gop +

=209, ©9s 9o, M9y 9p =209, Mdg Moo, Yooy Gop +

=09, sg 90, (oo Fop

4.3 Complete “lock” constraint

If we consider the complete “lock” constraint, which includes both the constraint on mutual
translation and mutual rotation of the markers P and S, we gagabian matrix which is built
by stacking the two jacobians of eq.41 and eq.65, one over the other:

o Jeda o Bl e,
be Jeale ol foale, [onl,

The submatrices of the first row (referring to the constraint on translations) are expressed by
eq.42 and following, while the sub-matrices of the second row (pertaining to the rotational
constraint) are expressed by eq.66 and following.

This jacobian has 7 rows (descending from 3 conditions on mutual movement plus 4
conditions of the quaternion equation for rotation) and 14 columns (because both body frames
have 7 coordinates: Gartesian and 4 for the quaternion representing the rotation).

However, classical mechanics teaches that six equations are enough to restraint the relative
degrees of freedom of two rigid bodies, while gacobian has seven rows: one more than the
strictly needed.

This happens because one of the four constraints descending from the quaternion equation
is redundant. In fact, if we had already introduced in the DAE system N constraints about the
unit length of the rotation quaternions of the N
rigid bodies, the product of eq.48 should by sure
return a quaternion of unit length: given 3 free ====
components, the fourth would follow immediately
because of this unit-length restraint.

With this assumption, one of the four
conditions expressed by the quaternion constrai
is redundant and can be eliminat&ti thus getting
a jacobian with the six rows (3+3) which are

(71)

Figure 2: aspect of the 7x14 jacobian matrix
of the complete “lock” constrai
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strictly needed.

Hence the resulting “lock” formulation spawn a vector of six restraint equations, the first
three coming from thecartesian constraint of eq28, and the other three coming from three
components of the quaternion-based rotational constraint of eq.49 (an opportune choice is to
select thevectorial-imaginary part):

CIock :{CX D{Ce}}T ' Clock :{Cx Cy Cz Ca Céj Ce&}T (72)

In a similar fashion, we get als0,.., » Cou» Qeiok» Ctiook -

6 OTHER CONSTRAINTS

Heretofore we introduced thick formalism which represents constraints where all the 6
relative degrees of freedom of two bodies are restrained, occasionally with motion laws.

If we suppress one or more of the 6 constraint equations, some reciprocal movements are
left free and we can create different types of joints with enough physical interpretation
(revolute joints, prismatic guides, spherical joints, etc.).

Also, if we provide adequate motion laws, we can use the same lock formalism to simulate
engines, linear actuators, assignment of trajectories, and so on.

From a programmer’s point of view, this means that for all the links in the multibody
system the “lock” formulation is computed to get the completeQgliocks Qciocks Ciocks Ct iock
vectors and matrices, but only selected rows of jaeobian (and the corresponding elements
in the Qciock Ciock Ctiock Vectors) are used and pasted into the DAE system.

In this paper, as practical examples, we take into account only the most meaningful joints
among all the 64 possible variants which can be obtained by suppressing different equations
of the lock formulation.

6.1 Spherical joint

This joint can be obtained, of course, with the simple suppression of all
3 constraints about mutual rotation; only tieartesiarCy,C,,C, constraints are
left. The resulting jacobian matrix has only three rows, extracted from row
1,2,3 of the Cqliock Matrix of eq.71. Also the vecto®c, C, Ct have only three
elements.

6.2 Prismatic joint

This joint means the suppression of only one of the three cartesian
constraints, for example the elimination of tGgconstraint allows the shifting
of the marker P along the Z axis of marker S (hence the Z axis of S would
used to indicate the direction of the prismatic joint). On the other hand, all #
three rotational constraints are kept active. The resultifaggobian matrix has
five rows, extracted from rows 1,2,4,5,6 of th&,[.cx matrix of eq.71
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6.3 Revolute joint

The revolute joint implies the superposition of marker’s origins, so all th
cartesian constraints,,C,,C, are kept active. Assuming that this joint allowsg.
the rotation of marker P about axis Z of marker S, one of the three rotationfi
constraints must be eliminated. It is easy to find that, if a rotation is perfor
aboutversor Z, the X and Y components of theectorial part of the resulting
quaternion are null. Hence, the two active rotational constraints@y eand Cg; , while Cyy is
not taken into consideration.

Thejacobian matrix has five rows extracted from row 1,2,3,4,5 of @ dcx matrix.

6.4 Cylindrical joint

This joint is similar to the revolute joint, but allows also the shifting of
marker P respect along the Z axis of marker S . Shiftingin X and Y is
forbidden, and only rotation about Z is allowed.

The jacobian matrix has four rows, extracted from row 1,2,4,5 of th€f]ock
matrix.

6.5 Engines, motors

A spinning engine can be represented by all the 6 constraint equations of the “lock”
formulation, where a user-defined motion law has been defined for the mutual rotation of the
two markers P and S, thus computing all formulas with the specifieds, =gs, (t) function
and its derivatives.

Otherwise,qs, could be kept constant and the motion law could be applied to the terms
g9 =(sp(t) or gsg =Qqsg(t), which represent the rotations of markers respect to their rigid
bodies.

Cx |Gy |G |G [ Gy | Ca

6.5 Other examples Bolt/ glue / fastener / nail / etc|x [x [x [x [x [x

In table 1 we report some | Pointon line X_|X
examples of joints which can | Point on plane X
be easily obtained from the Plane on plane X [X_|X
“lock formalism. The “X” Revolute X |[x [x [x [X
symbol means ‘active Cylindrical joint X [X X [X
constraint equation’. Angular alignment X |[X [X
Note that constraining just one | Oldham joint X X Ix Ix
of the three rotational degree: | prismatic joint x | x x [x |x
results in a joint which Birfield or Rzeppa Joint X |x X
transmits rotation in & homokinetic joint x |x [x X
homokinetic fashion, like the
Birfield or Rzeppa devices. Table 1: some examples of joints inherited from the “lock” constraint
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CONCLUSIONS

The adoption of quaternion as rotational coordinates allows a compact and versatile
formulation of constraint equations. Taking advantage of quaternion algebra, we developed a
formalism which exploits high generality, since it deals with the circumstance of constraints
between markers where rheonomic laws can be assigned either to the mutual
translation/rotation, either to the translation/rotation of markers respect to parent bodies.
Henceforth, many special purpose joints can be obtained from that single vectorial
formulation, just by suppression of constraint scalar equations, and by providing adequate
motion laws when a rheonomic behavior is needed.

We accomplished the analytical derivations of the constraint equations in order to avoid
numerical computation of jacobians, thus getting superior speed and precision.

Despite the apparent complexity of the analytical derivations, most formulas can be
simplified on the basis of the features used in the joint (presence of motion laws, etc.) and run-
time optimizations can take place during numerical calculus of equations.

These theoretical results fit well into an object-oriented approach to the programming of
multibody software. We developed in this sense our multibody software CHRONO, which
indeed shows high speed of calculus and stimulates further research in this field.
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