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Abstract

This paper deals with the sliding-contact constraint equations describing the relative
motion of two freeform surfaces, assuming that the surfaces can have arbitrary curvature
in 3D space. The sliding-contact equations are developed either for the non-penetration
condition and for the surface-tangency condition. Both are differentiated twice in time in
order to allow a straightforward application to dynamic and kinematic multibody simulation
within the context of an augmented lagrangian approach . This formulation represents the
contact constraint by means of a sliding tangent plane, hence exploiting the advantageous
optimizations of the so called lock formulation.

1 Introduction

Modern multibody software may be requested to perform simulations involving the contact
between arbitrarly-shaped surfaces: these are the higher-pair joints which are extensively used
in applied mechanics. Cam-follower mechanisms are notable examples of such joints, where the
contact doesn’t happen between cylindrical or prismatic surfaces, as in lower-pair joints, but
happens instead along a line or a point.

Several methods for lower-pair joints (cylindrical joints, revolute joints, etc.) have been
proposed and studied in multibody dynamics literature, but not so many methods have been
discussed for a general-purpose approach to the problem of the contact between freeform surfaces.

Figure 1: Example of contact between free-form rigid bodies.

Unfortunately, the analytical description of the kinematics of higher-pair joints may require
complex formalisms, expecially whenever the contact happens between two freeform surfaces in



three-dimensional space. This may be the case of the contact between wheel and railway, or in
spatial cams.

The kinematics of two rigid bodies subject to sliding contact is complicated by the fact that
the curvature of their surfaces is liable of mutual accelerations; moreover these curvatures could
be non uniform as in the example of cams.

This problem has been already investigated by some researchers, for example [2] recently
suggested a method which fits well into whatever multibody formalism which is based on joint-
coordinates: in that paper the contact point becomes a joint of the kinematical chain of rigid
bodies, and its coordinates are the four w,v parameters of the two surfaces.

Instead, our method is rather targeted at multibody software based on the lagrangian ap-
proach, where the constraints are added by means of lagrange multipliers, and the coordinates
of the equations are the natural coordinates of the rigid bodies. This, of course, implies that a
fast and efficient formalism must be defined in order to compute the contact constraint equa-
tions as well as their derivatives and their jacobians (which will be used to solve the DAE
differential-algebraic system, as explained in Shabana [14]).

Given that a fast and efficient way to handle the “point on a flat plane” basic constraint has
already been developed and tested within the framework of the lock formulation [1], we managed
to extend its capabilities to the case of contact between surfaces.

In fact, we can represent the contact constraint by introducing an auxiliary tangent plane
which moves between the two bodies as they slide. If one manages to compute the exact
position, alignment speed etc. of the tangent plane as function of body states during the
motion, the sliding-contact constraint can be expressed by means of a simple “point on a flat
plane” constraint, where the flat reference plane belongs to one of the two bodies, and the
point belongs to the other body. Note that both the point and the plane must have specific
relative motions respect to their bodies, because the plane must stay tangent to the shifting
contact point, and these kinematical contributions can be easily applied to the “point on plane”
constraint as described in the lock formulation (where arbitrary speed/accelerations can be freely
imposed to the references used to describe the plane and the sliding point).

2 The sliding plane approach

Lets consider two indeformable rigid bodies being in contact, under the simplificative hypothesis
of existence and non-singularity of the point of contact (multi-point contacts and degenerate
situations of the type surface-surface or line-surface are not taken into consideration)

Note that, for the moment, the hypothesis of unilateral constraint is not imperative, therefore
we will deal with bilateral contact for sake of semplicity -here we won’t discuss the problems of
non-smooth dynamics and impacts, which are investigated for example in [8] or [9]-.

It can be shown that the contact is geometrically correct if two conditions are satisfied at
once: the two surfaces must have a point in common, and the tangent planes in that point must
be the same.

Say ﬁp01,W7W is the point of contact on surface O1 expressed in absolute coordinate system
(W), and gsog_W,W is the point of contact on surface O2 expressed in absolute coordinate system
(W). These vectors will be later referenced as 1501 and §02 for a more compact notation.

The first constraint equation implies that 1301 and 502 must coincide in space, that is:

—

Cps = ]301 - §02 = 6 (1)

Now, say 7ipe1—w,w is the unit-lenght normal to the surface O1 at the point of contact ]301,
and 7ipe2—w,w is the unit-lenght normal to the surface 02 on the point of contact Sy,2. These
vectors will be later referenced as 7,1 and 7,2.



Figure 2: The bodies are taken apart to show the Figure 3: Ezxploded view. The contact point P,
contact point on body O1 and the sliding plane on and the sliding plane must move on their surfaces
body 02. Contact happens for coincident P and S, during relative body motion, so that P, and S,
and for aligned normals Tl,s and Ty . share the same speed and position.

This lead us to the second constraint equation, which requires that the two surfaces must be
tangent at the contact point, hence the normals must be aligned:

—

Cn - ﬁol + ﬁoQ = 6 (2)

We assume that the position of point P, on surface of body O1 can be expressed (at least,
locally) as a function of two curvilinear coordinates 1, vo1, and the same for point ]301, whose
position on surface can be a function of two curvilinear coordinates wuq2,vo2. Hence, satisfying
the equations 1 and 2 implies a system of nonlinear equations

—

Cps,n = C_: (QOla 402, Uol, Vol, U2, Vo2, t)) = 6 (3)

which must be solved either for the positions of the two bodies (the coordinates g1, go2), either
for the auxiliary variables w1, Vo1, Uo2, V2.

Note that one of the three scalar constraints of eq. 2 is redundant (because unit norm of
normals is implied, || 751 ||=|| To1 ||= 1), therefore the complete system of constraints eq.3 has
3+ (3—1) = 5 scalar equations. Meanwhile, four auxiliary variables uy1, Vo1, U2, Vo2 Were added:
hence the contact effectively subtracts 5 —4 = 1 degree of freedom from the mechanical system,
an intuitive result which is also confirmed by many authors dealing with classical mechanical
problems [11].

The introduction of four auxiliary variables in the state vector our system, as well as the
description of the contact by way of the 5-dimensional equation 3, of course adds unwanted
complication into our multibody formalism and may have a negative impact on the performance
of the simulation code.

Therefore one may want to reduce the system to a more handy formulation, where only
a single scalar constraint equation is added, and the four auxiliary variables can be recovered
afterward as dependent variables (i.e. only rigid body coordinates are introduced in state system,
while w1, Vo1, U2, Vo2 variables -and their derivatives- are computed separately).

An effective way to accomplish this task may be represented by the sliding plane approach,
which we discuss in this paper. Such method introduces a ”point on plane” constraint between
the two contacting bodies, which is responsible of reducing the degrees of freedom of the system



by one unit. During the multibody simulation, the position of the reference plane is continuously
moved tangentially to the surface of a body (as well as the reference point continuously moves
on the surface of the other), thus updating the auxiliary variables we1, Vo1, o2, Vo2 and their
derivatives as dependent variables (fig.2,3).

Given that there’s no need to add the variables uy1, Vo1, Uo2, Vo2 in system’s state vector,
the solution of kinematic and dynamic problems is somewhat simple: it just requires the
implementation of a holonomic constraint of the type "point on a plane”, where the posi-
tion/speed/acceleration of both the reference point and reference plane can be imposed. This
is easily achieved, for example, through the lock formulation approach, formulated in [1] and
briefly discussed in the next paragraph.

Furthermore, as a positive side effect of this approach, the orthogonal contact force is effort-
lessly recovered from the lagrangian multiplier of the ”point on plane” constraint.

However, special attention must be paid to the problem of computing the rheonomic terms
which are required by the lock formulation, as they will be responsible of the acceleration effects
caused by surface curvature. In other words, one must know not only the position but also
the speed of the contact point as a function of body states, in order to set proper values for
position/speed/acceleration of both the reference point and reference plane. The paragraph
”Kinematics of contact plane” will deal with this problem.

3 Basic point-plane constraint via ”lock formulation”

The so called ”lock formulation” relies heavily on quaternion algebra and offers a compact
yet efficient way to implement the derivations of constraint equations, where most common
holonomic and rheonomic constraints can be inherited from a single formalism. Moreover,
the jacobians are obtained analytically, and this has a positive impact on the performance of
multibody simulations based on the lagrangian approach.

Let consider two generic rigid bodies O1 ans O2,; both with two auxiliary coordinate systems
P and S (the so called ”"markers”) whose body-relative positions and body-relative rotations can
be constant or imposed via time-functions (fig. 4).

One can impose a translation constraint on the relative position of P respect to the coordinate
system of S: this is the ”positional” constraint. Also, one can impose a rotation constraint on
the relative rotation of P respect to S, in the coordinate system of S, and this is the ”rotational”
constraint.

If needed, both the positional and the rotational constraints can be expressed with time-
dependent functions, as well as the relative positions and relative alignments of markers respect
to their rigid bodies.

The effect of these positional and rotational constraints between P and S is a kind of ” glue”
between the two bodies, hence the name lock formulation. This is expressed by 6 scalar equations.
However, if one suppresses one or more scalar conditions, the constraint gets some degrees of
freedom and turns into specific holonomic constraints.

For example, a spherical joint is obtained by suppressing all the three scalar components
of the rotational constraints, and a cylindrical joint is obtained by suppressing -for example-
the Z positional component and the Z rotational component. In the same way we can obtain
lot of other holonomic constraints, for instance the prismatic guide, the point-on-line condition,
the point-on-plane condition (used extensively in this article), the Cardano joint, the revolute
joint, the parallelism condition, etc. Also, by setting adequate time-dependant functions in the
rheonomic terms of the equations, one can get whatever kind of actuators, motors, motion laws,
imposed trajectories, etc.

A simplified and compact version of the "lock formulation” is described below, as a quick
reference, but advanced details and implementation issues are described extensively in [1].



Figure 4: Reference frames which are used to build constraints with the ”lock formulation” method (two
examples)

Let’s introduce the following notation:

® (ro1s Gro2> 0015 G002, are the position-coordinates and rotation-coordinates of bodies O1
and O2, where rotations are expressed as unit quaternions ¢p,

® (xp, Gzg, 4o ps Gog are the coordinates (positions and rotations) of markers P and S respect
to their bodies, O1 and O2, and may be user-imposed functions of time.

[Ar] = [Ar(Gp,)] is a generic rotation matrix, function of a quaternion ¢g,

so that [Glol]%M = Wol,

[Glo1] is a 3x4 rectangular matrix, function of the quaternion gy
as described in [14]

ol

e [@] is a skew symmetric matrix such that [a]b = @ A b

— —

gzp = f(t) and g = f(t) are the imposed translation and rotation between P and S, in
coordinates of S.

Hence the positional constraint can be written as:

—

Ca: = (jl‘p,s,s - JxA = 6 (4)
C = [As]"[Moa)" (Gror + [M1)Gep) (T + [No2) o)) = Toa = 0 (5)

In order to obtain the jacobian matrix [Cy] and the vector [Q.], which are extensively used

in the equation Cp = [Cq]q; — C} =0 of lagrangian dynamics, one can differentiate twice the eq.
5. Then, after some algebraic manipulations, the analytical expression for the jacobian of the
lock formulation constraint (translational part) can be written in the following fashion:

[Cq.] = [[qu]xol [qu]eol [qu]xoz [qu]ooz] (6)
where:
[Caloor = +As]"[Ac2]”
[Calgor —[As]" TAo2) " (A1) (3o p ] [Glon]
[Colzoz —[As]" [Ac2]"
[Calor = +As]" [Ao]" [Acr][Tep][Glon]
+As]T (82T Top ] [Gloo) (7)



Also, the Q_; vector can be expressed as:

gz = T ( 01 wol Wol] + 2[A01]C‘zfcp [Aol]&xp> +
T T ( 02 WOQ WOZ] + 2[A02](.jzs [AOQ]i];xS) +
+2[A5} [Aoz]T(fa:p s + 28] M2l G, +2[A8) [A2] G +

émP—S,W
+[As]" [Aoal[@o2]@o2]]” Gop sy + [As] [Mo2) " Gp g — G (8)

On the other hand, the rotational constraint can be written in quaternion algebra as follows:
. o . .
Cyp = o\ 90p_s,s — 0% = 0 (9)

where we introduced the real quaternion ¢, = [1,0,0,0]7. However we won’t enter into
details for the rotational constraint, because this part of the lock formulation isn’t necessary for
the sliding contact theory presented in this paper (interested readers can find the expressions
for jacobian [Cy,] and vector Qg in [1]).

At this point, many holonomic and rheonomic constraints can be inherited from the formu-
lation above, simply by suppressing some scalar constraints among the three equations for the
traslation and/or the three equations for the rotation.

For example, the constraint ”point on plane” where the plane moves about one of the two
bodies following some prescribed position/speed/acceleration, can be easily recovered from eq.
4 where only the 3rd scalar equation is taken into consideration. Hence the reference P (whose
motion on O1 surface can be set via @up, @y ps @ups> Qps Tops qu) cannot move orthogonally to
the XY plane described by the reference S (whose motion on O2 surface can be set via the terms

@657 (jazsd Jmsv q_bsa (705> q_bs)'

4 Kinematics of contact plane

Since we have introduced the lock formulation (see equations 7 and 8) which allows the repre-
sentation of a simple point-plane constraint, now we must find the position and speed of the
references which define this kind of constraint in case the plane and the point are moving on
curved surfaces.

4.1 Contact plane: the position problem

As seen before, the contact constraint is expressed by two vectorial equations, the former saying
that the contact points on both the surfaces must have the same position in space, and the latter
implying that the two surfaces must be tangent (that is, the normals must be aligned).

Cps = Py — Sy = 0. (10)

— —

Cy, = Tlo1 + M2 = 0. (11)

The solution of the equations above for {u,1, Vo1, Ue2, Vo2 } is an highly non-linear problem,
and the solutions can be multiple or even infinite in degenerate situations (for example, if
contact points are multiple, or along a line such as in the case of the contact between two
parallel cylinders). In this paper we will focus our attention on the situation of a single contact.
Also, we won’t deal the details of the procedures which can be used to solve the non-linear
problem of finding globally the contact point(s), because this topic is extensively discussed in



other scientific areas, for instance in computational geometry, computer graphics and modelling
(3], [4], and [5]).

We just remark that collision-detection is a very time-consuming process, and efficient pro-
cedures must be set up for this task, for example [4] one can pre-process a rough tesselated
approximation of the NURBS surface, then he can perform polygon-polygon test very quickly,
expecially if an hierarchical tree structure of bounding boxes has been computed off-line as an
optimization.

We experienced that after the ”global” rough approximation of the contact point has been
obtained with such polygon-proximity test, a more precise ”local” solution can be refined by
using local non-linear programming methods, such as the gradient or Newton methods [10],
which operate on the true -non tesselated- parametric surface.

Also, we further improved the efficiency of this geometric problem by performing the “global”
contact point search with a less dense time sample than the faster “local” refinement. In fact
the local position must be refined at each step of the simulation in order to get smooth and
accurate results, but the position-jumps of the contact point (which are detected by the global
method) may happen seldom. Think about a cam and a follower: after the initial contact
point between cam and follower have been found once, the point may be updated during cam
rotation just by using the local optimization method, whose convergency can be fast because
the previous positions can be used as approximate guesses. Then, the global collision algorithm
can be invoked less frequently, just to check if there are sudden jumps in contact points (for
example, the cam has a dinch, or the follower touches another object, etc.) !

4.2 Contact plane: the speed problem

We can differentiate both equations 1 and 2 respect to time. The variables of equation 1 are the
four surface parameters {uo1, Vo1, Uo2, Vo2 } and the coordinates of the two rigid bodies {51, o2},
therefore:

pn d — N = — =~
Cps = & [Pol(uob Vol, QOI) - 502(u027 Vo2, qo?)} =0. (13)

Applying the chain rule of differentiation:

é’ o 8I:_;ol auol 8ﬁ01 6Uol + 6F_sol 85701 8]5;)1 _
ps Oupr Ot vy Ot O, Ot ot

<a§og gy 0Ss Ovey DS, Odya a§og>

14
Ouegy Ot Ovey Ot 0Go2 Ot ot (14)

The terms %%11 and ‘3%22 are matrices, with 3 rows and 6 columns (given that each rigid
body has 6 d.o.f.% and will be written [P,,,] and [S,,,] hereafter. Simplifying the null terms, we
can write the more compact form:

Note: in general, because of nonlinearities, the position problem is approached iteratively: here two operations
are required for each iteration. The first stage involves a single step on Newton method for solving the typical
position problem of inverse kinematics:

880(; Ag = [Cq]i Ag = —C; (12)
Giv1 = @i + Ag;
where the constraints C_"(q“7 t) contain all joints of the mechanical system including the ”point on plane” con-
straint, and the second operation consists in updating the the position of the point of contact, using the global/local
optimization methods discussed above. The two stages are repeated until convergence -if any- is reached.



8u02 81)02

= o a-ﬁol . a-1501
Oy

. pN Bgo . aS:o . hN
volﬂquJqol) —( 2u02+2voz+[sq02]qoz) (15)

Given that the state of the two bodies is known, the speeds &01 and ('j’oQ are known as well, so
we can collecting the unknown terms {%o1, Vo1, %2, Uo2} in order to obtain the following system:

uol
P, oP,, 95,9 05,2 } Vo1 : .
- - b =—[P, +[S 16
Sy G -G SN = R+ (Sl (16
Vo2

A quick glance at the system of eq.16, which has four unknowns and three scalar equations,
tells that some other equations must be written to get rid of the indetermination and finally
compute the parameters {to1, Vo1, Uo2, Vo2}. In fact now we must take into consideration the
abovementioned constraint on surface tangency, eq.2, which can be differentiated as follows:

5 d

n = & [ﬁol(uoh Vo1, 501) + ﬁ02(u02, Vo2, 502)] = 6 (17>

that is, using the same algebraic manipulations and differentiation rules used for 16:

é’ _ (aﬁol Ouer | Ofig1 Over | Ofig1 OGp1 8ﬁol)
" Oupr Ot  Ov, Ot 0, Ot ot
(8ﬁ02 Oug2 Oflp2 OVe2 O 8CTOZ 8ﬁo2> (18)
Ougy Ot  Ovyy Ot 0Oy Ot ot
= a77’:01 . a771:01 . o 8ﬁ02 . 8ﬁoQ . o
Cn = <6U01 Uo1 + 61}01 Vo1 + [nQOl]qol) + (8U02 Uo2 + 81102 Vo2 + [n(IOQ]QO2> (19)

The following system has three scalar equations and the same unknowns {41, Vo1, G2, Vo2 }
of system 16:

uol
aﬁol aﬁol 8ﬁoQ 8ﬁ02 ] 7')01 - N
. =—In —n 20
|: 8”01 8U01 6U02 avoz U2 [ 9ol ] qu [ do2 ] q02 ( )
’[)02

We can put together the two systems 16 and 20 to get the following:

8]301 81301 85:02 8§02 uol

7[PQO1](?01 + [SQO2](..702

Oupy  Ovyl Oy Oy Vot | _ (21)
N N N N T1p2 . .

Ofio  Oflor Ol Drigz || %o (g )it — [P )i

Oup1  Ovot Oug2 Ovp2 Vo2

The system above has four unknowns and six scalar equations. However two equations are
redundant, to be more precise one of the first three equations and one of the last three equations
can be eliminated, to obtain a 4x4 system which can be readily solved for {1, Vo1, o2, Vo2 }-

Let’s proof this. The tangent plane in P and S is the same for both the surfaces ol and
02 because of equation 2, and we can build the rotation matrix [A,] which is aligned to such



tangent plane. We can rewrite the system equations in that space, that is, after a coordinate
projection:

aﬁol aF_))ol . 8‘5_:02 . 85:02 uol

[An r [O]T Ouot Ovo1 Oup2 Ovp2 Vo1 _
O (AT | 97, Oty Oftgy  Oftge | | o2 [
6u01 .61101 au.oz 81}02 1‘}02
AT )
[0 T [An]T —[7g01 1001 — [1405) T2

One can easily verify that, if [A,] has been built with the Z axis parallel to the surface
normals (that is, if [A,]7 7,1 = {0,0,1}7) then the third and sixth row of system 22 have null
coeflicients. In other words, either vectorspaces of eq. 13 and eq. 17 spawn the tangent spaces
of P(u v) and S(u v) when eq. 1 and eq. 2 are satisfied and the states Gp1, Go2, @o1, @0 are
coherent with the point-plane constraint equation (see later).

Therefore we can get rid of the 3rd and 6th row of system 22 simply by using the first two
rows of the 3x3 rotation matrix [A,]7 when performing the projection in tangent coordinates.
This means that we can introduce the 3x2 matrix [A,,] which is like [A,,] except it hasn’t the
3rd column, which represents the orthogonal versor, i.e. the surface normal. This means that
the two columns of [\,] are simply obtained as two generic orthogonal versors contained in the
tangent plane. This lead to the following system in ”surface tangent coordinates”:

OP, OP, 9S40 0S50 Uol

D™ (017 V| Ouor  Ovor  Ouer  Duge | ) Vo1 | _
O Dwl™ | 010 Gt Oiy iy | | e [
Ouo1 .avol au_oQ Ovo2 Vo2
|:[)\’U/U}T [O]T } { _[qu1]§ol + [Sqoz](?ﬂ } (23)
[O]T [)‘uv]T (14011001 — [0 T2

Then, the coefficient matrix of the system has 4 rows and 4 columns, and the straightforward
Gauss solution scheme can be applied in order to obtain {#,1, Vo1, U2, Vo2 } as desired.

4.3 Contact plane: the acceleration problem

Now we can perform a further differentiation of eq.13 and eq.17 in order to obtain the unknown
accelerations of the points of contact on the two surfaces, expressed in parametric coordinates
as {'aoly i}oly iloQ, ﬁoQ}'

For eq. 13 we have:

= d 8130 . 8]30 . ., 8‘S_;o . 8§o o
Cps = 7 [( luol + 1fUOl + [PCIol]Qcﬂ) - <2u02 + 2U02 + [5402}QO2>‘| (24)

dt |\ Ouy Ovp1 Oup2 OVo2
-, P, 928, 928, 02P,; .
Coo = iy + 0 gttt + —— 6o + 2 1
T i Oundue T Gugdva T dugnd
8I:)ol 82P)l . . 62ﬁ01 . . 82ﬁ01 . M
+ 1+ VollUol + 7—F5 Vo1Vl + 7— 75V
v 01 8Uola Uol ol Tol 8Uolavol ol Tol 3%18%1 01901
aPol_, + 82P01 q u1+ 82]301 q_, '1}1—|— 82ﬁ01 q_, J
e @1 Ouor T B Ovor O DG DG
_as%  9*8p Qo 9S50 . 92 S0 i
Doy 2 OuoaOoy 2 % Ougdver % Ougedd, 2102



_(9502 . 825—;02 . . 825;‘02 . . 62§02

Vo2Up2 — Vo2Vo2 — )

—

Vo1 — — ——002G,2
Ovp2 0Vp20Ux2 0520002 Vo2 6‘]02

8502 <, 825:02 o 4 82502 N o 82§02 RN
6%2 402 8(?02871,02 qp2U02 8%281}02 4p2V02 — ) 026 a5 o> 902902

Similarly, for eq. 17 we have: n

o d [/ 071 . Onlo1 . Ofloa . Ofloa . .
n— 5, o o o o 2
Co= 57 | (Gatiton + Gottn + ol ) + (Grbiton + o2t + naald)| (20

= aﬁol . 62ﬁol . . 82ﬁol . . 827_7: ol o
Cn= ) Uol + p) ) Ul Uo1 T P) ) Up1Vo1 + p) a_» uolqol
Uol U1 OUo1 U1 0Vo1 Uo010Go1
+aﬁol . + 82ﬁ01 . . + 8277?:01 . + 62 T .
Vol Uo1lol + 75— Vo1Vol U 19
Qo1 * " OerOuer 0 OverOuer O ° 81}018 ool
+8ﬁ01é]; 62ﬁ01 J oy + 82ﬁ01 q_, Doy + a2”01 (T q
i N 1 a- o 1 N
dol ol 8QO18U01 ot™e 8qolavol ol 7o 6 a oliol
- 2 2 2
_’_8”02& + 0*1ig2 Gotion + 0“1l Goton -+ O0*1ig2 U CT
2 2Uo2 A o Wo2Up2 A oo Wo2
Oup2 ¢ Ou 20U e Oup20V02 ome 811/026(102 o302
8ﬁ02 .. 82ﬁ02 . . 82ﬁ02 C 6217502 N
+ Vo1 + Vo2Up2 + 77— Vo2V02 + o a-> Vo2¢p2
0vp2 0V20Up2 0020002 8’0028 o2
anoQ _» 8277':02 L. 62ﬁ02 oo, aQnOQ L o7
Oq 920U 2%2“02 + 9620002 2%2002 + 700 702902 (27)
02 o o o o

For the same reasons which lead to eq.22 and eq.23, the previous equations 27 and 25 can
be projected in tangent coordinates (discarding the orthogonal coordinate) obtaining a linear
system with 4 unknowns and 4 equations:

8ﬁo1 8ﬁ01 8§02 a'5_;02 uol

[Aao)t [T 1| Buor  Over  Ouwz  Oven Vo1 |
[ ]T P\uv]T_ 8ﬁ01 8ﬁ01 8ﬁ02 8ﬁ02 ?02 B
Quer  Ovel  Oug Ovp2 Vo2
D™ o 79
o DaI"]) g (28)

where ijs and Cjn are the vectors of the known terms of eq. 27 and 25.

By means of the above formulation, one can solve 23 and 28 to get, respectively, the para-
metric speeds and parametric accelerations {to1, Vo1, Uo2, Vo2 } and {1, Vo1, o2, Vo2 }-

In fact this works well as far as the contact-on-point doesn’t degenerate into the contact-on-
line or contact-on-surface situations, where the matrices of coefficients become ill conditioned.
This happens, for example, when a shaft is inserted into a cylindric hole with exactly the same
diameter. Hence singular situations must be carefully monitored and handled.

Once one has obtained {o1, Vo1, U2, Vo2} and {1, Vo1, lo2, Vo2 }, it’s easy to update the
equations of the point-on-plane holonomic constraint. As described in the introduction, such
condition consists in a plane (whose position, speed and acceleration about body O1 are known)
which constraints a point belonging to object O2 (also position, speed and acceleration of this
point about 02 must be known).

Note that eq. 23 and 28 provide speeds and accelerations in parametric coordinates, while the
point-on-plane constraint formulation needs body-relative carthesian speeds and accelerations,



like f’ol, Py ete. Tt’s easy, however, to compute these terms as functions of parametric speeds
and accelerations: given the expression of the parametric surfaces

Po1 = Por (to1,vo1) (29)
So1 = So1 (U2, Vo2) (30)
it follows:
= . 81301 . a]5;)1
P, = -_— -_— 31
ol Uol E Vol o ( )
= . 85:02 . 3502
Sop = 10y 222 4 gy 222 32
02 Uo2 Dt + Vo2 o ( )
and similarly, for the accelerations:
= .. 8]5;)1 . 815‘01 .9 62]301 .9 821301 .. aQﬁol
P, = -_— -_— _— 33
ol ol Ouot o1 Ovo1 o Ouo10U1 ol 0V010V01 ot tor Ou,10V01 ( )
= . 8502 . a‘5_;02 ) 825:02 .9 825_:02 .. 825_:02
S = ilgg 2202 1 j5n 2002 G202 34
02 Ho2 8U02 + Vo2 (%Og + Ho2 8u028u02 Vo2 800281}02 + Ho2002 8u028v02 ( )

The partial derivatives in eq. 31, 32, 33 and 34, can be obtained by straightforward numerical
differentiation of equations 29 and 30.
Note that we can distinguish two components for the P,S accelerations of eq.33 and 34:

Py = Pol,|| + Pol,J_
So2 = Sog + So2,L (35)
The terms ;5_:027“ and ]3017”, depending on parametric tangential accelerations i, v only, can be

called 'tangential components’ since from eq.33 and 34 it is easy to see that these vectors are
always directed tangentially to the contact surfaces.

= . ap’ol . a-P’ol

P017|| = 'U,Ol auOl + ’Uol 81}01 (36)
- a5, a5,

Spo | = oz 7 + 2 (37)

+ Vo2
8u02 © 81}02

The terms 57027 1 and 1301, 1, depending on parametric tangential speeds 1, v only, can be called
‘centripetal components’ (note some analogies with tangential and centripetal accelerations for
classical 2D mechanics).

- aQﬁ 1 aQﬁ 1 62ﬁ 1

P =2 ° )2 ° lo1T0l 7 58
ol,L = Uo1 Oup1 OUot Yol OV10V01 + o1 Uo1 01 0v,1 )

= 82§ 2 62§ 2 82§ 2

3 _ 2 o .9 o e <. 39
02,1 = Ugy 020U Vo2 V52002 tlozto2 20002 )

Now, one can see that the 'tangential’ terms do no affect at all the computation of accel-

eration terms of the point on plane constraint (that is, inserting §o2,\\ and ]3017” in eq.8 gives

always a null vector, because ]301,H € ker(]Cy,]) and S, 02,| € ker([Cy,]) when position constraint



is satisfied). This means that only the ’centripetal’ terms have true significance for the point-on
plane constraint.

In detail, this is very important for the practical implementation of the sliding plane method
in a dynamlcal simulator: in fact the computation of the constraint vector Q_; as in eq.8 can

take qxp = Pol | and qms = 5’02 | instead of ¢ qx = Pol and qx = Sog, with identical results.
Since ’tangentlal’ terms eq.36 and eq.37 aren’t needed, there’s no need to solve the system 28 for
parametric accelerations: this has a positive impact on computation speed and -most important-
on the ability to solve for unknown rigid body accelerations during dynamics 2.

4.4 Contact plane kinematics: optimizations

Some notes about noteworthy ways to optimize the sliding plane method.

Sometimes the computation of the linear systems 23 and 28 may be difficult: one may
want to avoid the many parametric differentiations which are needed to recover the coefficients,
not only for speed reasons but mostly because the computation of such differentiations could
be numerically ill-conditioned or hard to perform. For example, numerical differentiation of
surfaces can be troublesome in proximity of trimmed patches, across singularities caused by
neighbouring faces in B-rep topology, when using Catmull-Clark limit surfaces, and so on.

Therefore an easier (though approximate) way to compute the 1301, 1301, Sy2, Soa vectors
can be the followmg At each update during integration, one performs only the position search
of contact points Pol and Sog, as in eq.3, then the body relative speed and accelerations could
be simply obtained by backward numerical differentiation, knowing the previous position of the
points. For example, to get the speeds:

— — —

5 P P

o), — Po1|,_ = So2ls — So2|,_
P01|t — ot " otlt-at ~ t—At 502“ — tTfm (40)
and to get the accelerations:
]:3’ B P01|t - POllt-At 5,’ . SOQ\t - So2|t_At 11
olly = At o2 =T A; (41)

At a cost of obvious approximations, like the one-step delay and the low precision (which
anyway can be affordable when the step is very low), this trick completely avoids the linear
systems 23 and 28. As a positive side effect, surface details with very low scale (bumps, dinches,
scratches, small creases) are somewhat 'filtered” and smoothed out, while on the other hand the
systems 23 and 28 may be affected by numerical noise when the contact point passes across
surfaces with little bumps (where the curvature would range between very high values, even if
the surface is smooth on a larger scale and has an average low curvature).

Note, anyway, that the same ’bump filtering’ and ’surface smoothing’ effect can be obtained
with the original (exact) equations 23 and eq.28, if one just manages to compute the partial
derivatives of surfaces with some expedients. For example in case of singularities, topology
jumps, corners, creases, etc, it may be possible to get rid of original surface parametrization
P(u,v) in order to create a new local parametrization by use of a tangent plane with parameters
u*,v*. In this way, an orthogonal projection from plane to underlying surface(s), for example

2This consideration saves us from a potential tautology: ”the multibody dynamical solution includes the
rheonomic constraint of eq.8 in order to solve for unknown bodies’accelerations, but the term eq.8 itself contains
motion laws of references P,S which, among all other things, seem to be functions of body accelerations in their
turn, as given in eq.28...” However, this 'deadlock’ situation is resolved by the abovementioned consideration,
that only the ’centripetal’ (speed-dependent) part of P,S references has effect on the term eq.6 of the point-on
plane constraint. That is, we don’t need the a-priori knowledge of body accelerations in order to compute all the
terms of the sliding plane constraint in the dynamical solution problem: speed knowledge is enough.



obtainable by a general-purpose and robust ray-tracing algorithm, defines a new ’singularity
free’ parametrization P(u*,v*).

This means that no restrictive assumptions must be made on the C'—n and G —n continuity
of surfaces, and also surfaces whose derivatives are hard to compute can be used now (tesselated
meshes, implicit surfaces, Loop subdivision surfaces, etc.)

5 Implementation

An efficient approach to the solution of the DAE (differential algebraic) problem of constrained
lagrangian dynamics is discussed in [13]. The solution scheme exposed in fig. 5 relies on that
method, which includes two constraint-stabilizing steps per each integration step of the under-
lying ODE problem. Note that, among all the constraints equations, there is always the contact
constraint expressed as a point on plane condition.

During the iterative N-Raphson procedure, the problem of updating the position of the
"sliding plane” (step A2) is uncoupled from the constraint closure problem (step Al), and both
are executed at each iteration one after the other. This causes a simple implementation, while
convergence of the method is still good as if A1 and A2 problems were coupled. Later, having

A Position closure
(non linear problem
solved by iterative
scheme, es: N-Raphson)

A1l- Constraint position drifting removal

Solve stabilization for C(q,t)=0, to satisfy all constraints of multibody
system, hence correcting state q.

Among the constraint there may be one or more ‘point on plane’
conditions for the surface contacts.

v
A2- Contact point position update

Update the position of contact point by solving or minimizing the
non-linear eq. 3 (use previous position as initial guess > few steps)

\ 4

A 4
B1- Constraint speed drifting removal
Solve the linear problem C(q,t) =0, stabilizing speed drifting in
multibody system constraints, hence correcting state (speed part).
Among the constraint there may be one or more ‘point on plane’
conditions for the surface contacts.

\ 4
B2- Contact point speed & acceleration update

Update the speed and acceleration of references P and S used to
build the ‘sliding plane’ contact: use eq. 23, 38, 39

Speed closure

A Explicit integration
(es: Runge-Kutta)

C- Compute system unknowns
Solve the ODE part of the semi-explicit form of the lagrangian

A2,B2

multibody problem, to get accelerations and multipliers (reactions).

Among the constraint there may be one or more ‘point on plane’
conditions for the surface contacts.

A 4

(if integrating with high
order methods, contact
must be kept updated at
each dY/dt evaluation

with new state)

D- Compute new state (use integration formulas to update state) |

>
>

\4 - I
_| Advance to next integration time step l—P

Figure 5: Integration scheme (simplified flowchart)

obtained the correct orientation and position for the sliding plane constraint, the speed closure
of constraints can be easily solved too (step B1).

We remark that, once positions and speeds of multibody state are correct, one can compute
eq. 23, 31 and 32, as well as 38 and 39 without problems (step B2), then obtaining all the
informations about the speed and centripetal acceleration of the references ]301 and 502 which
are used to represent the sliding plane constraint.

In fact the computation of unknowns accelerations for a given state (step C) can take place



only if the kinematics of P,i and S, is correct in terms of both positions, speeds and accel-
erations: again we stress the point that only the ’centripetal’ parts of references’accelerations
(depending only on parametric speeds eq.23) is required in eq.8 of the lock formulation, while
the 'tangential’ part of acceleration (which depends from eq.28) has no effect at all on that
constraint.

Therefore, only after step C, one may compute also eq. 28, eq.33 and eq.34 in order to get
also the complete accelerations of contact points (i.e. including tangential effect), if needed.

6 Examples

To validate the model of contact, we built a simple cam-follower mechanism using the three
dimensional modeling environment of our multibody software. The cam and the follower are
made of NURBS bi-parametric surfaces (fig. 6).

In detail, the shape of the cam has been created with a procedural modeling tool which uses
the formulas in [11], where one gets the profile as a function of the motion law imposed to the
follower. Therefore, using a test motion law, we built the cam surface for that motion, using
200x4 control points (the more the samples. the less the approximation).

>

=

Figure 6: Cam-follower benchmark for contact between freeform surfaces

We performed the simulation of the mechanism, and compared the resulting motion of the
follower (moved only by contact) with the hypothetical ”exact” motion law that we used to build
the cam. We observed little or no differences in position and speed of the follower, but sometimes
a small noise can affect acceleration (fig.8) mostly because the cam hasn’t an analytical shape,
but it is approximated by 5th-degree Nurbs).

7 Conclusions

An approach has been proposed for the multibody simulation of sliding contact between freeform
surfaces. The geometric constraint has been represented by means of a tangential plane which
moves between the contact bodies, hence only a simple ”"point on plane” constraint had to be
added to the system of motion-equations. On the other side, the problem of computing the
auxiliary variables of the contact constraint (position, speed and acceleration of contact point)
could be solved separately, mostly for sake of better performance. The theoretical result have
been implemented into our general-purpose multibody software and have been successfully tested
with real world examples. Future developements may embrace the application of these results
to non-parametric surfaces and the problem of high-performance collision detection.
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Figure 7: Comparing the two motion laws: exact  Figure 8: Speed and acceleration comparison. The
(analytical original) and simulated motion of fol- speed profile of simulated motion coincides exactly
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