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Abstract. The dynamical simulation of nonlinear mechanical systems, in a context of real time interaction
between human designer and computer, requires a fast and general-purpose solution scheme. Despite the
approach based on lagrangian multipliers implies the introduction of many redundant variables, hence
penalizing computational speed if compared to other methods, it also offers the most universal and versatile
way to describe articulated systems. Therefore, by using specific formalisms borrowed from quaternion
algebra, we implemented some expedients which make the lagrangian approach as fast as possible, allowing
custom factorization of sparse matrices and enhanced constraint stabil ization. Meanwhile this suggests a
solution scheme which can handle, with a minimal set of formalisms, some problems implicated by realtime
user-interaction with mechanisms, such as intermitting contacts, coll isions and il l-posed constraints.

1. Introduction
The evolution of the computational resources in

modern computers encourages a growing interest for
virtual prototyping of mechanical devices within 3d
graphical interfaces.

This means that complex mechanisms, such as
prosthetic devices or robotic arms, can be sketched,
assembled and moved in a CAD-like environment,
thus allowing the designer to test the kinematic and
dynamical behavior by mouse interaction.

Usually there are two distinct approaches to the
simulation of mechanical systems: the method of ‘ joint
coordinates’  (or ‘ recursive’  or ‘ reduced’  coordinates’ )
and the method of ‘cartesian’  or ‘maximal’
coordinates. The former approach introduces the least

possible number of free coordinates to describe the
state of the system (usually the rotations in joints),
while the latter introduces an huge amount of
coordinates  as if rigid bodies were not constrained,
and some algebraic equations are be added in order to
represent the constraints between the parts by means
of the so-called “ lagrangian multipliers” .

While the ‘ reduced coordinates’  methods are
inherently faster -given their lower dimensionality-,
they must challenge the topological problem of
parametrizing the system’ s degrees of freedom, that
may be a difficult task, especially when dealing
with closed-loop kinematical chains.

On the other hand, lagrangian methods offer the
most general and versatile way to model mechanical
systems since each entity (rigid bodies, forces,
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constraints) can be seen as black boxes, and
arbitrary relations can be imposed to variables.
This inspires a modular design of the solution
method, which fits well into an object-oriented
approach and allows an easier implementation of
complex constraints (such as intermitting contacts,
non holonomic constraints, etc).

The big drawback of lagrangian methods is the
fact that they imply the solution of systems with a
large number of equations in many variables, hence
leaning toward a O(n3) solution time for n rigid
bodies, while most reduced-coordinates methods
(for example, the optimal Featherstone O(n)
algorithm) have nearly l inear dependence to the
number of parts, at least for open-loop mechanisms.

However, a recent research (Baraff, 1996)
showed that, even in a lagrangian framework, one
can exploit the sparsity of acyclic constraint
systems in order to develop a direct, non iterative
solution scheme with exact O(n) l inear time.

Encouraged by Baraff’ s result, we stuck to the
lagrangian approach, and developed special
techniques which make the lagrangian method
competitive, in terms of speed, with reduced-
coordinates schemes.

2. Quaternion kinematics
In order to develop an efficient method for the

solution of dynamical and kinematic problem, we
must develop some specific formulas for rotation
kinematics. We decide to use quaternions as
coordinates for the rotation of references not only
because this avoids singularities in transformations,
but also because quaternion algebra offers a
powerful, yet straightforward, way of handling the
constraint equations. In fact our simulation software
computes constraint jacobians with a fast analytical
approach, thank to quaternion algebra. The so called
“ lock formulation”  method, which derives the
constraint jacobians analytically for 50 holonomic
and rheonomic constraints, is described in
(Tasora,1999).

2.1 Basic quaternion algebra
Here are some basic properties of quaternions,

applied to kinematic problems.
A quaternion is a tetra-dimensional hyper-

complex number },{ 31 ℑℜ∈q  with the following

properties:

3210 eeee ⋅+⋅+⋅+= kjiq (1)

1222 −==== ij kkji (2)

where non-commutative multiplication holds
between terms: ij=k, j i=-k, j k=i, kj=-i, ki=j , ik=-j .

Separating the vector imaginary part v and scalar
real part s, as in q=(s,v), multiplication between
quaternions can be expressed as a Grassman vector
product, that is:

( )211221212121 ss,ss vvvvvvqq ×++−= o (3)

The dot product 21 qq o , the sum and the product

between quaternion behave as the corresponding
traditional vector operations.

The conjugate of a quaternion q is q* , in eq.4, and
the euclidean norm is defined in  eq.5:
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We noticed that the Grassman quaternion
product (eq.3) can be written also in terms of l inear
algebra, using the following symbols:
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as well as:
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2.2 Quaternions for  frame kinematics

Only unimodular quaternions ||q||=1 describe
rigid rotations. Direct and inverse relations between
unimodular quaternions and alternative angle
representations can be found in many references
(Tasora,1999, Shabana1989, Wehage 1984).

Rotation matrices [Λ] can be expressed in terms
of quaternions  [Λ]= [Λ(q)] as follows:
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Rotation of a point pa into pb by a quaternion qa,b

can be written (Watt, 1995) with double Grassman
products, where we introduce the pure-imaginary
quaternions p=(0,p), that is:

[ ] aa,bb )( pqp Λ=    �   *
a,baa,bb qpqp = (9a)

Since rotation quaternions are unimodular,
remembering eq.4 and eq.5, we get the inverse of
eq.9a by conjugating the rotation quaternions:

a,ba
*

a,ba qpqp =  (9b)

An easy relation between angular speed (as
vector ωl in frame local coordinate system) and the
time-derivative of rotation quaternion dq/dt can be
easily deduced (Wehage, 1984, Shoemake, 1995),
again by using pure quaternions wl = (0, ωl):

*
lw,l2

1
w,l wqq =&  (10)

For angular speed ωw, in world coordinate system,
we use eq.9b to write:

w,lw
*

w,ll qwqw = (11)

then, substituting eq.11 into eq.10, and observing
that, for unimodular quaternions, we can simplify
and cut away q*q = q q*= qℜe , we get:

w,l
*
w2

1
w,l qwq =&  (12)

Also, we can time-differentiate eq.10 and eq.12
once in order to obtain the relation between
acceleration-quaternions and angular acceleration
vectors  ( α l  and α w , in local or world-reference):

*
lw,l2

1*
lw,l2

1
w,l wqαqq &&& += (13)

w,l
*
w2

1
w,l

*
w2

1
w,l qwqαq &&& += (14)

As well as we got the formulas to get time-derived
quaternions as functions of angular speed and angular
accelerations, we can get also the inverse relations. In
detail, by pre-multiplication of eq.10 by q*

l,w or by
post-multiplication of eq.12 by ql,w , remembering that
q*q = q q*= qℜe can be simplified in multiplications,
and recall ing def.(4), we get:

w,l
*

w,1
*
l 2 qqw &=       w,l

*
w,1l 2 qqw &−= (15)

*
w,lw,l

*
w 2 qqw &=      *

w,lw,lw 2 qqw &−= (16)

By differentiation of eq.15 and 16, we get also

the inverse relations for angular accelerations:

)(2 w,l
*

w,1w,l
*

w,1l qqqqα &&&& +−= (17)

)(2 *
w,lw,l

*
w,lw,lw qqqqα &&&& +−= (18)

Note that equations 15,16,17,18 can be written also
with linear algebra (by the way this would help to
rearrange the formalisms in order to avoid some
unnecessary computations, since the real part of
quaternions w and α is always null).

In fact, recall ing the matrix-form of the
Grassman product (eq.6 and 7), we can use two 3x4
non-square matrices [G(q)] defined as:
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in order to rewrite our kinematic relations for
angular speeds (eq.10,12,15,16) as:

[ ] w,lw,lll )(G qqω &=  (21)

[ ] w,lw,lww )(G qqω &= (22)

[ ] l
T

w,ll4

1
w,l )(G ωqq =&  (21)

[ ] w
T

w,lw4

1
w,l )(G ωqq =& (22)

For angular accelerations, either by differentiation
of the above equations, or by manipulating
eq.13,14,17,18, we get the same results:

[ ] [ ] w,lw,llw,lw,lll )(G)(G qqqqα &&&& +=  (23)

[ ] [ ] w,lw,lww,lw,lww )(G)(G qqqqα &&&& += (24)

[ ] [ ] l
T

w,ll4

1
l

T
w,ll4

1
w,l )(G)(G ωqαqq &&& +=  (25)

[ ] [ ] w
T

w,lw4

1
w

T
w,lw4

1
w,l )(G)(G ωqαqq &&& += (26)

Interesting enough, we observed that, under the
assumption of unimodularity of quaternions, some
terms of these equations vanish, in particular the
second addenda of eq.23 and eq.24. These become
simply αl=[Gl] q&&  and αw=[Gw] q&& .  In a similar

fashion, also the second addenda of eq.17 and eq.18
can be neglected, thus simplifying into

w,l
*

w,1l 2 qqα &&−= and *
w,1w,lw 2 qqα &&−=  .
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3. Lagrangian system dynamics
Let introduce the vector of coordinates x, built

from all the coordinates of rigid bodies:

{ }TTT

)n()1( ,..., xxx =
where x(i)={ p(i)

T,q(i)
T} T is the coordinate of the i-th

body, that is carthesian position p and rotation
quaternion q.

Using this maximal set of variables, the integrals of
system’s equations of motion must reside on the
constraint manifolds, hence posing a differential-
algebraic (DAE) problem of the type:
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where Lagrange’s equations (with multipliers λ)
are coupled to constraint equations C=0, functions of
time and coordinates x. Since DAE-oriented implicit
solvers may be slow and complex, a common way to
solve eq.27 is to reduce it to an explicit ODE (ordinary
differential) system of the type:
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where constraint equations are inserted in eq.28 in
their time-differentiated form (eq.31):

0xCC == )t,(  (29a)

0CxC =+= tx ]C[ && (29b)

0QxC =−= cx ]C[ &&&& (29c)

It is important to remark that some terms of
eq.29a,29b,29c usually entail complex calculations,
expecially the jacobian [Cx] and the Qc vector which
are needed for eq.28, but we have recently developed a
compact and efficient method, called lock formulation,
which allows a fast and unified way to compute these
jacobians for a wide class of holonomic and
rheonomic constraints, thank to quaternion algebra
(Tasora,1999).

Note that straightforward integration of
accelerations from eq.28 generally doesn’ t suffice,
since only the differentiated form of constraint
equations eq.29c is satisfied, and this doesn’ t
guarantee also eq.29a and 29b to be true as time
integration goes on: this means that some constraint
drifting in position and speed may take place. Then, to
avoid this side effect, fast ‘Baumgarte’  constraint

stabilization techniques could be used (Bae,1991).
However we experienced the best results with an

exact elimination of constraint violation like in the
scheme recently suggested by W.Blajer (Blajer,1997).

In detail, after each integration step relying on
accelerations of eq.28, we correct the system’s state by
moving positions and velocities back to their

manifolds, C and C&  respectively, by means of small
corrections which are orthogonal to the manifolds.

The correction of position constraint violation must
be performed first, and may be repeated iteratively
since C is non linear in x (but often just one or two
iterations are sufficient to drive the correction ∆x
within tolerance). We worked out what can be seen as
a ‘custom’  Newton Raphson solution of eq.29a:
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One can see that the ∆x obtained above is the only
one that, among the infinite which can satisfy eq.29a,
also minimizes { ½∆xT[M]∆x + ∆x[Cx]

T
τ} .

The correction of speed constraint-violation can be
faced in the following way, where no iterations are
necessary:
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xxx &&& ∆+= )old()new(

Note that eq.31 can be see as a Newton Raphson
solution of eq.29b in a single step. This speed
correction can be seen as the one which, among the
infinite which respect eq.29b, also minimizes
{ ½∆ x& T[M]∆ x&  + ∆ x& [Cx]

T
µ } .

We stress a remarkable fact: few algebraic
manipulations reveal that eq.30 and eq.31 are
completely equivalent to the formulation of Blajer,
therefore the same considerations can be applied, in
particular the fact that x∆ and x&∆ corrections obtained
in this way do not change the positions and the speeds
of the system in the null space of Cm, that is the n-
dimensional subspace Dn which complements Cm in
Es, i.e. Cn∩Dm=0 Cm∪Dm=Es   for m constraints in a
system of s coordinates (Blajer,1997).

Despite the more compact formulas developed by
Blajer do not introduce auxiliary multipliers τ and µ  as
in systems eq.30 and eq.31, in our scheme the
coefficient  matrices of eq.28, eq.30 and eq.31 are the
same, and their high degree of sparsity suggests a
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custom and fast way of solving the linear systems.

4. System factor ization
The linear systems of eq.28, 30 and 31 must be

solved many times during integration: in case of many
coordinates the solution time can be the bottleneck of
the entire simulation code, since required time for
direct solution schemes is generally O(n3), for n
variables. Since our method is based on lagrangian
multipliers with a maximal set of variables, the value
of n can be high, and the only way to achieve fast
performances as in reduced coordinate methods
consists in implementing O(nh) solution schemes, with
h tending to unity: this is possible if one exploits the
extreme sparsity of these matrices.

4.1 Matr ix structure
The coefficient matrix in eq.28, 30 and 31,

referenced as [Amc] from  now on, has the  structure of
fig.1 (for a simple example with 3 bodies and two
constraints A and B, the former between body 1 and 2,
the second between 2 and 3).

Note that the mass matrix is diagonal-dominant
(being built from masses and 4x4 inertia tensors [Mqq]
in quaternion coordinates), and the jacobian [Cx] is
built from blocks corresponding to single joints. Also,
the jacobian has additional k rows for k bodies, since
the auxiliary constraints on unimodularity of
quaternions must be taken into account (the condition
e0

2+e1
2+ e2

2+e3
2=0 is differentiated once and twice in

time, so Ct, Qc and 1x4 jacobians [Cx]quat n are obtained
just like for all other constraints C(x,t), as in eq.29a,
29b, 29c).

4.2 Projection in α-ω  space
The solution of  linear systems of the type

[Amc]x=b as in eq.28,30,31 can be faced by Gauss
forward-backward scheme, or by LU decomposition.
However, these standard methods are acceptable only
for few variables, since their complexity is strictly
O(n3).

A little improvement would consist in using LU or
Gauss method modified for sparse matrices. Yet this
poses a big problem: row pivoting destroys symmetry,
hence deteriorates sparsity and almost nullify this
advantage after few row reductions.

Therefore, one could consider a sparse Cholesky
decomposition LLT, which retains symmetry. But this
won’ t work, since [Amc] is not always positive definite
(because of jacobian blocks), even if well conditioned.

The only solution would be the adoption of a LDLT

decomposition method, which is similar to Cholesky,
but does not require [Amc] to be positive definite (no
square roots are performed).

However, straight LDLT decomposition of [Amc]
would soon or later run into a null pivot, since the
diagonal 4x4 block matrices [Mqq] i have rank-3
(coming from the projection of the inertia tensors [Jωω] i

in 4-dimensional quaternion space, as
[Mqq] i=[Gl] i

T[Jωω] i[Gl] i ). Then, diagonal pivoting could
take place, but we found that diagonal pivoting for this
kind of [Amc] matrix often leads to a bad conditioning
of the numerical process.

Finally we found that the best way to go is to use
LDLT factorization on a subspace-form of the [Amc]
matrix: in detail, reducing the rotation coordinates
from 4 (the quaternions components, constrained by
unimodularity) to 3 unconstrained, which would cause
3x3 full-rank blocks on the diagonal, and would also
avoid the small additional [Cx]quat jacobians.

Here comes the use of the quaternion formulae we
developed heretofore. We can see that, under
unimodularity of q in eq.19, we have:

[ ] [ ] [ ]I)(G)(G l
T

l4

1 =qq  (32)

then we can pre-multiply all quaternions of vector
x&&  in eq.28 by the quantity ¼[Gl]

T[Gl].
Then, remembering that, by eq.23, αl=[Gl] q&& , we

can write eq.28 in the form which uses α instead of
q&& as unknowns:    

[Cx]

[Cx]
T[M]

[0][Cx]A

[Cx]B

[Mqq]2

[Mqq]1

[Mqq]3

m1

m1

m1

m2

...

[Cx]quat 1

[Cx]quat 2

[Cx]quat 3

Fig.1: Structure of system matrix [Amc]    (example)
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To keep [Amc] symmetric and square, one can pre-
multiply both terms of eq.33 by the matrix [Tq]

T, thus
obtaining:
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From eq.35 the matrix of coefficients, now called
[Amc]α , becomes smaller than [Amc] and looses the
[Cx]quat blocks, see fig.2.

This reworked version of the coefficient matrix
works very well with sparse LDLT factorization, then
one can efficiently solve system of eq.35 for αx&& .
Later, the vector αx&&  (with rotation coordinates in α-
space) can be transformed in the original vector x&& ,
which uses quaternions as rotation coordinates, simply
by applying eq.25 for each body:

[ ] [ ] )i(l
T

)i(w,ll4

1
)i(l

T
)i(w,ll4

1
)i(w,l )(G)(G ωqαqq &&& +=

An interesting remark about the transformation of
eq.35: efficient multiplication with the [Tq] matrix can
exploit sparsity. That is, one just has to post-multiply
some parts of jacobians [Cx] by matrices ¼[Gl]

T, and
use [Jωω] instead of [Mqq].

In fact in eq.35 the inertia matrices are transformed
as ¼[Gl][Mqq][Gl]

T¼, that is ¼[Gl][Gl]
T[Jωω][Gl][Gl]

T¼
= [Jωω], so these simplify into 3x3 inertia (constant)
tensors as in Newton-Euler equations.

Note also that there is an optimal ordering of
constraint equations in eq.35 (the one which produces
the less number of ‘ fill-ins’  while decomposing matrix
[Amc]α). See preordering methods in  (Duff 1996).

Similarly to eq.35, also eq.30 can be projected in
different coordinates. In detail, using the same method,
equation 30 is transformed into the following system,
where },,...,,{ )n()n()1()1( βpβpx

ω
∆∆∆∆=∆ :
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 (36)

It is easy to see that, after solving eq.36, one can
recover x∆  from ωx∆  simply using, for each body:

[ ] )i(l
T

)i(w,ll4

1
)i(w,l )(G βqq ∆=∆  (36b)

In a like manner, from eq.31 one gets the following
system, where },,...,,{ )n()n()1()1( ωpωpx

ω
∆∆∆∆=∆ :
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 (37)

Again, after solving the linear system 37, one gets
the original x&∆  from ωx&∆  simply applying eq.21 for
each body:

[ ] )i(l
T

)i(w,ll4

1
)i(w,l )(G ωqq ∆=∆ &    (37b)

Note that this transition to quaternions to three
rotation coordinates happens only for the solution of
systems 28,30,31, and it not equivalent to simply
adopting from the beginning three angles (ex. HPB or
Cardano angles) as body coordinates, since this would
not offer all advantages of quaternions in terms of the
advanced algebra, the singularity-avoidance and, most
important, the possibility of adopting our lock-
formulation for fast computation of constraints.

      

[M]
α

[0]

[Iω ω]1

m1

m1

m1

m2

...

[Cx]α[Cx] α A

[Cx] α  B

[ ω ω]2I

[ ω ω]3I

Fig.2: Structure of system matrix [Amc] α  (example)
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5. Sparse LDL T factor ization
Systems 35, 36 and 37 must be solved many times

during integration. However, some efforts can be
saved because the coefficient matrices are the same,
that is [Amc]α can be factorized in LDLT form just for
the solution of system of eq.35, while only the
backward substitution is performed for eq.36 and 37
since known terms change, but [Amc]α won’ t change
(someone may argue that eq.36 is an iterative N-R
solution scheme, where also [Amc]α may change a bit,
but we observed that usually one or two iterations are
sufficient to correct small residuals, and [Amc]α can be
freely considered constant).

In order to perform an efficient LDLT factorization
of the  [Amc]α matrix, one must use a sparse matrix
representation.

We found an efficient storage method by using
linked lists of non-structural-zeros elements, one for
each row of the matrix as in figure 3 (the lower part
isn’ t stored since symmetry is assumed).

The LDLT algorithm has been rewritten, taking
advantage of this linked list representation. Forward
decomposition works “ in place”  (LT is written over the
upper part of  [Amc]α, D is written on the diagonal of
[Amc]α , lower L is not written, LT diagonal is assumed
unitary)

Here’s the pseudocode for the LDLT factorization.

for ( k=1;  k  < r ows;  k++)
pi vot  = Get El ement ( ( k- 1) , ( k- 1) ) ;
[ handl e di agonal  pi vot i ng her e,  i f  needed. . ]
[ i f  nul l  pi vot  anyway,  f or ce pi vot  t o 10e34]
for ( i =k;  i  < r ows;  i ++)

l eader  = Get El ement ( ( k- 1) ,  i ) ;
i f  ( l eader )

r = ( l eader  /  pi vot ) ;   
sub = Get Fi r st RowEl ement ( i ) ;
r ow = Get Fi r st RowEl ement ( k- 1) ;
for ( NULL; r ow! = NULL; r ow=r ow- >next )

  i f  ( r ow- >col  >= i )
mval  = r ow- >val ;
sub=Get Opt El ( i ,  r ow- >col ,  &subval ,  sub) ;
newval  = subval  -  r  *  mval ;

sub=Set Opt El ( i ,  r ow- >col ,  newval ,  sub) ;
  Set El ement ( ( k- 1) , i ,  r ) ;

Note: in the pseudocode above, most fetch/store is
done via the speed-optimized functions Get Opt El ( )

and Set Opt El ( )  which use a ‘guess’  for addressing the
element in linked lists, with the following syntax:

[ el em* ] suggest ed_next _guess= Get Opt El
( r ow, col , [ doubl e* ] f et ched_val ue, [ el em* ] guess) ;

[ el em* ] suggest ed_next _guess= Set Opt El
( r ow, col , [ doubl e* ] st or ed_val ue, [ el em* ] guess) ;

For backward substitution, given the factorization
[Amc]α=[L][D][L]T and a vector of known terms b, one
can solve [Amc]α x = b with three easy steps: u=[L]-1b,
v=[D]-1u, x=([L]T)-1v.

This is done with the following (unoptimized)
pseudocode, where  X is the unknown vector, and
pi var r ay[ ]  an array of pivots, if diagonal pivot
occurred in factorization:
for ( k=1;  k<r ows;  k++) / /  BACKWARD subst i t ut i on -  L

sum = 0;
for ( j =0;  j <k;  j ++)

sum+=( Get El ement ( j , k) ) * ( X- >Get El ement ( pi var r ay[ j ] , 0) ) ;
x  = ( B- >Get El ement ( pi var r ay[ k] , 0)  -  sum) ;
X- >Set El ement ( pi var r ay[ k] , 0,  x) ;

for ( k=0;  k<r ows;  k++) / /  BACKWARD subst i t ut i on -  D
x = X- >Get El ement ( pi var r ay[ k] , 0)  /  Get El ement ( k, k) ;
X- >Set El ement ( pi var r ay[ k] , 0, x) ;

for ( k=( r ows- 2) ;  k>= 0;  k- - ) / /  BACKWARD subst i t ut i on -  L'
sum = 0;
for ( j =( k+1) ;  j < r ows;  j ++)

sum+=( Get El ement ( k, j ) ) * ( X- >Get El ement ( pi var r ay[ j ] , 0) ) ;
x  = ( X- >Get El ement ( pi var r ay[ k] , 0)  -  sum) ;
X- >Set El ement ( pi var r ay[ k] , 0,  x) ;

Mechanisms with ill-conditioned constraints and
redundant joints may cause over-constrained systems:
this often happens in devices with intermitting
contacts,  impacts and variable topology in general.. In
these situations the factorization scheme cannot avoid
zero pivots during forward LDLT decomposition (after
all possible pivotings). Then, we found that a
straightforward artifice is to force that pivot to a very
high value (ex.1034) and then proceed as usual with
decomposition. In this way, the corresponding
lagrangian multiplier will be nearly zero when doing
the backward substitution, and its equation won’ t
affect anything (later, ill placed constraints can be
removed).

6. Examples
As examples of application of the solution scheme,

we propose the virtual prototyping of a prosthetic arm
(fig.4) and the dynamical simulation of a man which
rides a bike on a uneven terrain (fig.5), for hazard
estimation.

The prosthetic arm has been modeled with 7 rigid
bodies and 8 links, for a total of 82 variables (42
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Fig.3: sparse storage of matrix [Amc] α  (small example)
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coordinates, 40 scalar constraints). The designer can
test the kinematics and the dynamics of the device by
mouse interaction over the three dimensional model,
since the simulation runs fast enough to allow real-
time rates (more than 150 dynamical simulation steps
per second, on a 700 MHz AMD CPU, which means
about 6 ms per simulation step).

Such prosthetic arm is built on the principle of the
differential gear: two DC motors are mounted into the
arm shield and rotate the two side gears which are
coaxial to the second axis of the Cardano’s suspension
of the shoulder (since the frontal pinion is locked to
the breast, this causes a 2-DOF spherical motion).

The transmission of the torques passes from motors
to differential gears by means of two ball-screw
reducers and two pulleys with iron wires, for reasons
of compactness, efficiency and noise. Otherwise,
worm-screw reducers can be used, as in fig.4.

All these components are taken into account during
both the dynamical and kinematic analysis.

The simulation of the multibody model can be a
valuable help for studying which torques are needed
for given motion tasks, hence assisting the choice of
the proper transmission and motor components. In
detail, specific motions can be assigned to the wrist of
the complete arm (such as: ‘ take a book’ , ‘ lift a bottle’ ,

specified as cartesian Nurbs envelopes) and the graphs
of the torques for the two shoulder motors can be
suddenly obtained. This is useful to test different
features and components, in order to find the best
tradeoff between speed, cost, weight,  efficienty and
noise.

Of course, this multibody simulation can be
extended also to the study of the complete robotized
arm (motor torques and joint reactions can be obtained
for all the parts of the device, including elbow and
robotized hand/wrist). Given to the enhanced
complexity of this 9-body full model, with elbow and
wrist, the system DAE has 104 variables (54
coordinates, 50 scalar constraints) and the simulation
speed is a bit lower: 8-9 ms of CPU time per step.

Fig.4: Prototype of prosthetic arm (detail)
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Fig.6: Example: rotation and angular speed of the two gears
of the prosthetic arm, for a slow and rectilinear motion of

the hand in cartesian space.

Fig.5:Simulation of a bike on uneven terrain
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It is interesting to remark that this kind of
prosthetic shoulder cannot be controlled simply by
letting the user switch on-off the two engines with
mio-electric sensors, since the effect would be highly
impredictable and even trivial trajectories could
require a cooperative and coordinated motion of both
the engines, moreover with non-linear laws. However
this complexity can be overridden by a real-time
controller which lets the user choose the motion of the
hand in plain cartesian space (that is in an intuitive
way, like ‘upper’ , ‘ lower’ , ‘more on the left’ , ‘more on
the right’ , ‘nearer’ , ‘ farther’ ) while the inverse
kinematics is automatically performed to remap the
motion in the joint space of the motors.

A prototype of this robotized prosthetic shoulder is
under development in our department, and will be
soon assembled and tested in real environments.

The dynamical simulation of the man riding the
bike consists of a very complex multibody model: 17
bodies, 18 links, for a total of 200 variables (102
coordinates, 92 scalar constraints). Note that, despite
the high dimensionality of the problem, the dynamic
solution runs so fast that the true bottleneck is rather
the visualization and the tire model, not the multibody.

The man model consists of a simplified skeleton of
rigid bodies (anthropometric data comes from the
Winter man model), and the bike model is based on a
standard commercial “city bike” , with 28-622 700 x
28C tires. The mass moments of inertia of the parts
have been obtained from Gauss quadrature of the B-
rep geometry, in the 3D modeler environment.
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Fig. 6: Experimental and simulated vertical tire stiffness, for
city bike (above) and low-inflated  mountain bike (below).

A three dimensional deformable tire model has
been implemented (points of contact with the ground
are sampled with 3-6 mm resolution via a ray-tracing
algorithm, with octree optimization), and experimental
tests have been performed in order to tune and validate
this model, as can be seen in fig.6.

Also, we accomplished some experimental tests to
get the exact coefficient of friction for the specific
road conditions of this simulation: main results are
reported in table 1.

Static
friction

Kinetic
friction

Asphalt – clean 0.97 0.86
Asphalt – wet 0.90 0.88
Stone – clean 0.68 0.65
Stone – wet 0.62 0.61
Steel rail – clean 0.45 0.42
Steel rail – wet, but clean 0.38 0.38
Steel rail – wet and dirty <0.35 <0.34

Table 1 : Friction coefficients of the 28-622 bike tire.

Since the stiffness of the contact between seat and
man plays a relevant role in the dynamics of the
system, we also performed some experiments to
measure the behavior of such non-linear stiffness. The
graph of stiffness k as a function of downward motion
of hips is reported in figure 7.
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Fig. 7 : Vertical nonlinear stiffness of contact man-seat

Many simulations have been run (each lasting 3
seconds) in order to analyze the effects of the crossing
of road obstacles with varying shapes. In detail, the
obstacle was represented by a misplaced stone in the
road pavement: our intention was to study which is the
acceptable step height before injuries can occur, and
how this height affects parameters such as vertical
acceleration, vehicle displacement from optimal
trajectory, reaction forces, and so on.

As a concluding remark, we observe that in simple
mechanisms (for example, the prosthetic arm) the gain
in computation speed is at least 2x..3x respect to a
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naive (full Gauss) solution of eq.28,30,31. Using
custom sparse factorization on eq.35,36,37, the higher
the number of bodies, the more gain in performance
can be expected: in fact we experienced speedup
factors of 20x, and more, for systems with high
dimensionality (nvariables>>100), like the case of the
man on the bicycle.

In fact, table 2 shows that the computational effort
grows almost linearly with the increasing of the
number of variables in the differential-algebraic
problem, i.e. O(nk) with k≈1.0, while a naive solution
method would show a straight O(n3) dependence on
complexity.
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Arm  (shoulder
mechanism only)

82 42 40 >150 0.006

Arm (complete,
with forearm hand)

104 54 50 >125 0.008

20-pieces closed
kinematic chain

180 120 60 67 0.015

40-pieces closed
kinematic chain

360 240 120 24 0.042

Man with bike 200 108 92 56 0.018

Table 2 : Performance of the method (700 MHz cpu)

7. Conclusions
A fast solution scheme for the lagrangian-

multiplier method of n-body mechanisms has been
developed and successfully tested.

By applying specific formulas of quaternion
algebra together with a custom factorization of sparse
matrices, we obtained a very efficient method for the
solution of differential-algebraic problems.

Such theoretic framework encouraged a compact
way of handling problems like constraint stabilization,
intermitting contacts, redundant joints and impacts,
consequently allowing its application to complex
problems of interactive dynamics.
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