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Abstract. This paper deals with the sliding-contact constraint equations describing the relative
motion of two freeform surfaces, assuming that the surfaces can have arbitrary curvature in three-
dimensional space. The sliding-contact equations are developed either for the non-penetration con-
dition and for the surface-tangency condition. Both are differentiated twice in time in order to allow
a straightforward application to dynamic and kinematic multibody simulation within the context of
an augmented Lagrangian approach. This formulation represents the contact constraint by means
of a sliding tangent plane, hence exploiting the advantageous optimizations of the so called lock
formulation.
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1. Introduction

Modern multibody software may be requested to perform simulations involving the
contact between arbitrarily-shaped surfaces: these are the higher-pair joints which
are extensively used in applied mechanics. Cam-follower mechanisms are notable
examples of such joints, where the contact does not happen between cylindrical
or prismatic surfaces, as in lower-pair joints, but happens instead along a line or a
point.

Several methods for lower-pair joints (cylindrical joints, revolute joints, etc.)
have been proposed and studied in multibody dynamics literature, but not so many
methods have been discussed for a general-purpose approach to the problem of the
contact between freeform surfaces.

Unfortunately, the analytical description of the kinematics of higher-pair joints
may require complex formalisms, especially whenever the contact happens between
two freeform surfaces in three-dimensional space (Figure 1). This may be the case
of the contact between wheel and railway, or in spatial cams.

The kinematics of two rigid bodies subject to sliding contact is complicated
by the fact that the curvature of their surfaces is liable of mutual accelerations;
moreover these curvatures could be non-uniform as in the example of cams [1].

This problem has been already investigated by some researchers, for example
Balling [2] recently suggested a method which fits well into whatever multibody
formalism which is based on joint-coordinates: in that paper the contact point
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Figure 1. Example of contact between free-form rigid bodies.

becomes a joint of the kinematical chain of rigid bodies, and its coordinates are
the four u,v parameters of the two surfaces.

Instead, our method is rather targeted at multibody software based on the Lag-
rangian approach, where the constraints are added by means of Lagrange multi-
pliers, and the coordinates of the equations are the natural coordinates of the rigid
bodies. This, of course, implies that a fast and efficient formalism must be defined
in order to compute the contact constraint equations as well as their derivatives and
their Jacobians (which will be used to solve the DAE differential-algebraic system,
as explained in [3]).

Given that a fast and efficient way to handle the ‘point on a flat plane’ basic
constraint has already been developed and tested within the framework of the
lock formulation [4], we managed to extend its capabilities to the case of contact
between surfaces.

In fact, we can represent the contact constraint by introducing an auxiliary
tangent plane which moves between the two bodies as they slide. If one manages
to compute the exact alignment and position of the tangent plane as function of
body states during the motion, the sliding-contact constraint can be expressed by
means of a simple ‘point on a flat plane’ constraint, where the flat reference plane
belongs to one of the two bodies, and the point belongs to the other body. Note that
both the point and the plane must have specific relative motions respect to their
bodies, because the plane must stay tangent to the shifting contact point, and these
kinematical contributions can be easily applied to the ‘point on plane’ constraint
as described in the lock formulation (where arbitrary speed/accelerations can be
freely imposed to the references used to describe the plane and the sliding point).
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2. The Sliding Plane Approach

Let us consider two rigid bodies O1 and O2 being in contact, under the simplificat-
ive hypothesis of existence and non-singularity of the point of contact (multi-point
contacts and degenerate situations of the type surface-surface or line-surface are
not taken into consideration)

Note that, for the moment, the hypothesis of unilateral constraint is not im-
perative, therefore we will deal with bilateral contact for sake of simplicity. Here
we will not discuss the problems of non-smooth dynamics and impacts, which are
investigated for example in [5] or [6].

It can be shown that the contact is geometrically correct if two conditions are
satisfied at once: the two surfaces must have a point in common, and the tangent
planes in that point must be the same.

Say PO1 is the point of contact on surface of body O1, and SO2 is the point of
contact on surface of body O2, both vectors being expressed in absolute coordinate
system.

The first constraint equation implies that PO1 and SO2 must coincide in space,
that is:

Cps = PO1 − SO2 = 0. (1)

Now, say nO1 is the unit-length normal to the surface of body O1 at the point
of contact PO1, and nO2 is the unit-length normal to the surface of body O2 on the
point of contact SO2. Both vectors are expressed in the same coordinate system.

This leads us to the second constraint equation, which requires that the two
surfaces must be tangent at the contact point, hence the normals must be aligned:

Cn = nO1 + nO2 = 0. (2)

We assume that the position of point PO1 on surface of body O1 can be expressed
(at least, locally) as a function of two curvilinear coordinates uO1, vO1, and the
same for point PO1, whose position on surface can be a function of two curvilinear
coordinates uO2, vO2. Hence, satisfying Equations (1) and (2) implies a system of
nonlinear equations

Cps,n = C(qO1, qO2, uO1, vO1, uO2, vO2, t) = 0. (3)

which must be solved either for the positions of the two bodies (the coordinates
qO1, qO2), either for the auxiliary variables uO1, vO1, uO2, vO2.

Note that one of the three scalar constraints of Equation (2) is redundant (be-
cause unit norm of normals is implied, ‖ nO1 ‖=‖ nO2 ‖= 1), therefore the complete
system of constraints equation (3) has 3+(3−1) = 5 scalar equations. Meanwhile,
four auxiliary variables uO1, vO1, uO2, vO2 were added: hence the contact effectively
subtracts 5 − 4 = 1 degree of freedom from the mechanical system, an intuitive
result which is also confirmed by many authors dealing with classical mechanical
problems [7].
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Figure 2. The bodies are taken apart to show the contact point on body O1 and the sliding
plane on body O2. Contact happens for coincident PO1 and SO2, and for aligned normals
nO2 and nO1. Contact point PO1 and the sliding plane must move on their surfaces during
relative body motion, so that PO1 and SO2 share the same speed and position.

The introduction of four auxiliary variables in the state vector of our system, as
well as the description of the contact by way of the five-dimensional equation (3),
of course adds unwanted complication into our multibody formalism and may have
a negative impact on the performance of the simulation code.

Therefore one may want to reduce the system to a more handy formulation,
where only a single scalar constraint equation is added, and the four auxiliary
variables can be recovered afterward as dependent variables (i.e. only rigid body
coordinates are introduced in state system, while uO1, vO1, uO2, vO2 variables and
their derivatives are computed separately).

An effective way to accomplish this task may be represented by the sliding
plane approach, which we discuss in this paper. Such method introduces a ‘point
on plane’ constraint between the two contacting bodies, which is responsible of
reducing the degrees of freedom of the system by one unit. During the multibody
simulation, the position of the reference plane is continuously moved tangentially
to the surface of a body (as well as the reference point continuously moves on
the surface of the other), thus updating the auxiliary variables uO1, vO1, uO2, vO2 and
their derivatives as dependent variables (Figure 2).

Since there is no need to add the variables uO1, vO1, uO2, vO2 in system’s state
vector, the solution of kinematic and dynamic problems is somewhat simple: it
just requires the implementation of a holonomic constraint of the type ‘point on a
plane’, where the position/speed/acceleration of both the reference point and refer-
ence plane can be imposed. This is easily achieved, for example, through the lock
formulation approach, formulated in [4] and briefly discussed in the next section.

Furthermore, as a positive side effect of this approach, the orthogonal contact
force is effortlessly recovered from the Lagrangian multiplier of the ‘point on
plane’ constraint.
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However, special attention must be paid to the problem of computing the rheo-
nomic terms which are required by the lock formulation, as they will be responsible
of the acceleration effects caused by surface curvature. In other words, one must
know not only the position but also the speed of the contact point as a function of
body states, in order to set proper values for position/speed/acceleration of both the
reference point and reference plane. Section 4 will deal with this problem.

3. Basic Point-Plane Constraint via ‘Lock Formulation’

The so called lock formulation relies heavily on quaternion algebra and offers a
compact yet efficient way to implement the derivations of constraint equations,
where most common holonomic and rheonomic constraints can be inherited from
a single formalism. Moreover, the Jacobians are obtained analytically, and this
has a positive impact on the performance of multibody simulations based on the
Lagrangian approach.

Let us consider two generic rigid bodies O1 and O2, both with two auxiliary
coordinate systems P O1 and SO2 (the so called ‘markers’) whose body-relative po-
sitions and body-relative rotations can be constant or imposed via time-functions
(Figure 3).

One can impose a translation constraint on the relative position of P O1 respect
to the coordinate system of SO2: this is the ‘positional’ constraint. Also, one can
impose a rotation constraint on the relative rotation of P O1 respect to SO2, in the
coordinate system of SO2, and this is the ‘rotational’ constraint.

If needed, both the positional and the rotational constraints can be expressed
with time-dependent functions, as well as the relative positions and relative align-
ments of markers respect to their rigid bodies.

The effect of these positional and rotational constraints between P O1 and SO2 is
a kind of welding between the two bodies, hence the name lock formulation. This
is expressed by six scalar equations. However, if one suppresses one or more scalar
conditions, the constraint gets some degrees of freedom and turns into specific
holonomic constraints.

For example, a spherical joint is obtained by suppressing all the three scalar
components of the rotational constraints, and a cylindrical joint is obtained by sup-
pressing, for example, the Z positional component and the Z rotational component.
In the same way we can obtain lot of other holonomic constraints, for instance
the prismatic guide, the point-on-line condition, the point-on-plane condition (used
extensively in this article), the Cardano joint, the revolute joint, the parallelism con-
dition, etc. Also, by setting adequate time-dependant functions in the rheonomic
terms of the equations, one can get whatever kind of actuators, motors, motion
laws, imposed trajectories, etc.

A simplified and compact version of the lock formulation is described below,
as a quick reference, but advanced details and implementation issues are described
extensively in [4].
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Figure 3. Reference frames which are used to build constraints with the lock formulation
method (two examples).

Let us introduce the following notation:

− [�r ] = [�r(qθr )] is a generic rotation matrix, function of a quaternion qθ ,
− qxO1, qxO2, qθO1, qθO2, are the position-coordinates and rotation-coordinates of

bodies O1 and O2, where rotations are expressed as unit quaternions qθ ,
− qxP , qxS, qθ P , qθ S are the coordinates (positions and rotations) of markers

P O1 and SO2 respect to their bodies, O1 and O2, and may be user-imposed
functions of time. Example: absolute origin of P O1 is PO1 = qxO1 +[�O1]PO1,O1,
where body-relative position can be set by means of a function PO1,O1 =
qxP (t),

− [GlO1] is a 3 × 4 rectangular matrix, function of the quaternion qθO1
, so that

[GlO1]q̇θO1
= ωO1, as described in [3],

− [ã] is a skew symmetric matrix such that [ã]b = a ∧ b,
− qx� = f(t) and qθ� = f(t) are the imposed translation and rotation between

P O1 and SO2, in coordinates of SO2.

Hence the positional constraint can be written as:

Cx = qxP−S,S
− qx� = 0 (4)

Cx = [�S]T [�O2]T
((

qxO1
+ [�O1]qxP

)− (
qxO2

+ [�O2]qxS

))− qx� = 0. (5)

In order to obtain the Jacobian matrix [Cq] and the vector [Qx], which are
extensively used in Lagrangian dynamics through the equation

C̈x = [Cq]q̈ − Qx = 0; (6)

one can differentiate Equation (5) twice. Then, after some algebraic manipula-
tions, the analytical expression for the Jacobian of the lock formulation constraint
(translational part) can be written in the following fashion:[

Cqx

] = [[
Cqx

]
xO1

[
Cqx

]
θO1

[
Cqx

]
xO2

[
Cqx

]
θO2

]
(7)
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where[
Cqx

]
xO1 = +[�S]T [�O2]T[

Cqx

]
θO1 = −[�S]T [�O2]T [�O1][ ˜qxP ][GlO1][

Cqx

]
xO2 = −[�S]T [�O2]T[

Cqx

]
θO2 = +[�S]T [�O2]T [�O1][ ˜qxP ][GlO1]

+ [�S]T
[ ˜[�O2]T qxP−S,W

]
[GlO2] (8)

Also, the qx vector can be expressed as

qx = + [�S]T [�O2]T
([�O1][ω̃O1][ω̃O1]qxP + 2[�̇O1]q̇xP + [�O1]q̈xP

)
− [�S]T [�O2]T

([�O2][ω̃O2][ω̃O2]qxS + 2[�̇O2]q̇xS + [�O2]q̈xS

)
+ 2[�̇S]T [�̇O2]T qxP−S,W

+ 2[�̇S]T [�O2]T q̇xP−S,W

+ 2[�S]T [�̇O2]T q̇xP−S,W

+[�S]T
[[�O2][ω̃O2][ω̃O2]

]T
qxP−S,W

+ [�̈S]T [�O2]T qxP−S,W
− q̈x�. (9)

On the other hand, the rotational constraint can be written in quaternion algebra as
follows:

Cθ = q−1
θ�

qθP−S,S
− qθ = 0, (10)

where we introduced the real quaternion qθ = [1, 0, 0, 0]T . However we will
not enter into details for the rotational constraint, because this part of the lock
formulation is not necessary for the sliding contact theory presented in this paper
(interested readers can find the expressions for Jacobian [Cqθ ] and vector Qθ in
[4]).

At this point, many holonomic and rheonomic constraints can be inherited from
the formulation above, simply by suppressing some scalar constraints among the
three equations for the translation and/or the three equations for the rotation.

For example, the constraint ‘point on plane’ where the plane moves about one
of the two bodies following some prescribed position/speed/acceleration, can be
easily recovered from Equation (4) where only the third scalar equation is taken
into consideration. Hence the reference P O1 (whose motion on O1 surface can be
set via qxP , q̇xP , q̈xP , qθP , q̇θP , q̈θP ) cannot move orthogonally to the XY plane
described by the reference SO2 (whose motion on O2 surface can be set via the
terms qxS , q̇xS , q̈xS , qθS , q̇θS , q̈θS ).

4. Kinematics of Contact Plane

Since we have introduced the lock formulation which allows the representation of
a simple point-plane constraint, as in Equations (8) and (9), now we must find the
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position and speed of the references which define this kind of constraint in case the
plane and the point are moving on curved surfaces.

4.1. CONTACT PLANE: THE POSITION PROBLEM

In general, because of nonlinearities, the position problem is approached iteratively.
With our method, two distinct correction stages are required for each iteration.

Step A1. The first stage involves a single step on Newton method for solving the
typical position problem of inverse kinematics:

∂Cn

∂q
�qi = [

Cq

]
i
�qi = −Ci ,

qi+1 = qi + �qi , (11)

where the constraints C(q, t) contain all joints of the mechanical system in-
cluding the ‘point on plane’ constraint.

Step A2. The second operation consists in updating the the position of both point
and plane of contact, using global and/or local optimization methods. Also the
alignment of contact plane may change.

The two steps are repeated until convergence – if any – is reached. We ex-
perienced that this ‘two steps’ uncoupled scheme is more efficient than the direct
solution of the complete coupled problem (3). In fact, as said before, there is no
need to add the variables uO1, vO1, uO2, vO2 in system’s state vector, and the solution
of step A1 is somewhat simple: it just requires the implementation of a geometric
constraint of the type ‘point on a flat plane’.

Now some considerations about step A2, involving the updating of the sliding
plane position for optimal uO1, vO1, uO2, vO2.

As seen before, the contact constraint is expressed by two vectorial equations,
the former saying that the contact points on both the surfaces must have the same
position in space, and the latter implying that the two surfaces must be tangent (that
is, the normals must be aligned):

Cps = PO1 − SO2 = 0,

Cn = nO1 + nO2 = 0. (12)

The minimization of the residuals of the equations above for optimal values
{uO1, vO1, uO2, vO2} is an highly nonlinear problem, and the solutions can be mul-
tiple or even infinite in degenerate situations (for example, if contact points are
multiple, or along a line such as in the case of the contact between two parallel
cylinders). In this paper we will focus our attention on the situation of a single
contact. Also, we will not deal the details of the procedures which can be used to
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solve the nonlinear problem of finding globally the contact point(s), because this
topic is extensively discussed in other scientific areas, for instance in computational
geometry, computer graphics and modelling [8–10].

We just remark that collision-detection (as well as proximity-detection) is a very
time-consuming processes, and efficient procedures must be set up for this task, for
example, [9] one can pre-process a rough tesselated approximation of the NURBS
surface, then one can perform polygon-polygon test very quickly, especially if an
hierarchical tree structure of bounding boxes has been computed off-line as an
optimization.

We experienced that after the ‘global’ rough approximation of the contact point
has been obtained with such polygon-proximity test, a more precise ‘local’ solution
can be refined by using local nonlinear programming methods, such as the gradient
or Newton methods [11], which operate on the true – non-tesselated – parametric
surface.

Also, we further improved the efficiency of this geometric problem by perform-
ing the global contact search with a less dense time sample than the faster local
refinement. In fact the local position must be refined at each step of the simulation
in order to get smooth and accurate results, but the position-jumps of the contact
point (which are detected by the global method) may happen seldom. Think about
a cam and a follower: after the initial contact point between cam and follower have
been found once, the point may be updated during cam rotation just by using the
local optimization method, whose convergency can be fast because the previous
positions can be used as approximate guesses. Then, the global collision algorithm
can be invoked less frequently, just to check if there are sudden jumps in contact
points (for example, the cam has a hole, or the follower touches another object,
etc.)

4.2. CONTACT PLANE: THE SPEED PROBLEM

We can differentiate both Equations (1) and (2) respect to time. The variables of
Equation (1) are the four surface parameters {uO1, vO1, uO2, vO2} and the coordinates
of the two rigid bodies {qO1,qO2}, therefore:

Ċps = d

dt

[
PO1(uO1, vO1,qO1) − SO2(uO2, vO2,qO2)

] = 0. (13)

Applying the chain rule of differentiation:

Ċps =
(
∂PO1

∂uO1

∂uO1

∂t
+ ∂PO1

∂vO1

∂vO1

∂t
+ ∂PO1

∂qO1

∂qO1

∂t
+ ∂PO1

∂t

)

−
(
∂SO2

∂uO2

∂uO2

∂t
+ ∂SO2

∂vO2

∂vO2

∂t
+ ∂SO2

∂qO2

∂qO2

∂t
+ ∂SO2

∂t

)
. (14)

The terms ∂PO1/∂qO1 and ∂SO2/∂qO2 are matrices, with three rows and six columns
(given that each rigid body has six d.o.f.) and will be written [PqO1

] and [SqO2
]
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hereafter. Simplifying the null terms, we can write the more compact form:

Ċps =
(
∂PO1

∂uO1

u̇O1 + ∂PO1

∂vO1

v̇O1 + [PqO1
]q̇O1

)

−
(
∂SO2

∂uO2

u̇O2 + ∂SO2

∂vO2

v̇O2 + [SqO2
]q̇O2

)
. (15)

Given that the state of the two bodies is known, the speeds q̇O1 and q̇O2 are
known as well, so we can collecting the unknown terms {u̇O1, v̇O1, u̇O2, v̇O2} in order
to obtain the following system:

[
∂PO1

∂uO1

∣∣∣∣ ∂PO1

∂vO1

∣∣∣∣ −∂SO2

∂uO2

∣∣∣∣ −∂SO2

∂vO2

]

u̇O1

v̇O1

u̇O2

v̇O2




= −[PqO1
]q̇O1 + [SqO2

]q̇O2. (16)

A quick glance at the system of Equation (16), which has four unknowns and
three scalar equations, tells that some other equations must be written to get rid of
the indetermination and finally compute the parameters {u̇O1, v̇O1, u̇O2, v̇O2}. In fact
now we must take into consideration the above mentioned constraint on surface
tangency, Equation (2), which can be differentiated as follows:

Ċn = d

dt

[
nO1(uO1, vO1,qO1) + nO2(uO2, vO2,qO2)

] = 0, (17)

that is, using the same algebraic manipulations and differentiation rules used for
(14):

Ċn =
(
∂nO1

∂uO1

∂uO1

∂t
+ ∂nO1

∂vO1

∂vO1

∂t
+ ∂nO1

∂qO1

∂qO1

∂t
+ ∂nO1

∂t

)

+
(
∂nO2

∂uO2

∂uO2

∂t
+ ∂nO2

∂vO2

∂vO2

∂t
+ ∂nO2

∂qO2

∂qO2

∂t
+ ∂nO2

∂t

)
, (18)

Ċn =
(
∂nO1

∂uO1

u̇O1 + ∂nO1

∂vO1

v̇O1 + [nqO1
]q̇O1

)

+
(
∂nO2

∂uO2

u̇O2 + ∂nO2

∂vO2

v̇O2 + [nqO2
]q̇O2

)
. (19)

The following system has the same unknowns {u̇O1, v̇O1, u̇O2, v̇O2} of system (16),
with three scalar equations:

[
∂nO1

∂uO1

∣∣∣∣ ∂nO1

∂vO1

∣∣∣∣ ∂nO2

∂uO2

∣∣∣∣ ∂nO2

∂vO2

]

u̇O1

v̇O1

u̇O2

v̇O2




= −[nqO1
]q̇O1 − [nqO2

]q̇O2. (20)



SLIDING CONTACT BETWEEN FREEFORM SURFACES 249

We can put together the two systems (16) and (20) to get the following:


∂PO1

∂uO1

∂PO1

∂vO1

−∂SO2

∂uO2

−∂SO2

∂vO2

∂nO1

∂uO1

∂nO1

∂vO1

∂nO2

∂uO2

∂nO2

∂vO2





u̇O1

v̇O1

u̇O2

v̇O2




=
{ −[PqO1

]q̇O1 + [SqO2
]q̇O2

−[nqO1
]q̇O1 − [nqO2

]q̇O2

}
. (21)

The system above has four unknowns and six scalar equations. However two
equations are redundant, to be more precise one of the first three equations and one
of the last three equations can be eliminated, to obtain a 4 × 4 system which can
be readily solved for {u̇O1, v̇O1, u̇O2, v̇O2}.

Let us proof this. The tangent plane in P and S is the same for both the surfaces
of bodies O1 and O2 because of Equation (2), and we can build the rotation matrix
[�n] which is aligned to such tangent plane. We can rewrite the system equations
in that space, that is, after a coordinate projection:

[ [�n]T [0]T
[0]T [�n]T

]
∂PO1

∂uO1

∂PO1

∂vO1

−∂SO2

∂uO2

−∂SO2

∂vO2

∂nO1

∂uO1

∂nO1

∂vO1

∂nO2

∂uO2

∂nO2

∂vO2





u̇O1

v̇O1

u̇O2

v̇O2




=
[ [�n]T [0]T

[0]T [�n]T
]{−[PqO1

]q̇O1 + [SqO2
]q̇O2

−[nqO1
]q̇O1 − [nqO2

]q̇O2

}
. (22)

One can easily verify that, if [�n] has been built with the Z axis parallel to the
surface normals (that is, if [�n]T nO1 = {0, 0, 1}T ) then the third and sixth row of
system (22) have null coefficients. In other words, either vectors of Equations (13)
and (17) belong to the tangent spaces of P(u, v) and S(u, v) when Equations (1)
and (2) are satisfied and the states qO1, qO2, q̇O1, q̇O2 are coherent with the point-plane
constraint equation (see later).

Therefore we can get rid of the third and sixth row of system (22) simply by
using the first two rows of the 3 × 3 rotation matrix [�n]T when performing the
projection in tangent coordinates. This means that we can introduce the 3×2 matrix
[λuv] which is like [�n] except it does not have the third column, which represents
the orthogonal versor, i.e. the surface normal. The two columns of [λuv] are simply
obtained as two generic orthogonal versors contained in the tangent plane. This
lead to the following system in surface-tangent coordinates:

[ [λuv]T [0]T
[0]T [λuv]T

]
∂PO1

∂uO1

∂PO1

∂vO1

−∂SO2

∂uO2

−∂SO2

∂vO2

∂nO1

∂uO1

∂nO1

∂vO1

∂nO2

∂uO2

∂nO2

∂vO2





u̇O1

v̇O1

u̇O2

v̇O2
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=
[ [λuv]T [0]T

[0]T [λuv]T
]{−[PqO1

]q̇O1 + [SqO2
]q̇O2

−[nqO1
]q̇O1 − [nqO2

]q̇O2

}
. (23)

Then, the coefficient matrix of the system has four rows and four columns, and
the straightforward Gauss solution scheme can be applied in order to obtain the
values of {u̇O1, v̇O1, u̇O2, v̇O2} as desired.

4.3. CONTACT PLANE: THE ACCELERATION PROBLEM

Now we can perform a further differentiation of Equations (13) and (17) in order
to obtain the unknown accelerations of the points of contact on the two surfaces,
expressed in parametric coordinates as {üO1, v̈O1, üO2, v̈O2}.

For Equation (13) we have:

C̈ps = d

dt

[(
∂PO1

∂uO1

u̇O1 + ∂PO1

∂vO1

v̇O1 + [PqO1
]q̇O1

)

−
(
∂SO2

∂uO2

u̇O2 + ∂SO2

∂vO2

v̇O2 + [SqO2
]q̇O2

)]
, (24)

C̈ps = ∂PO1

∂uO1

üO1 + ∂2PO1

∂uO1∂uO1

u̇O1u̇O1 + ∂2PO1

∂uO1∂vO1

u̇O1v̇O1 + ∂2PO1

∂uO1∂qO1

u̇O1q̇O1

+ ∂PO1

∂vO1

v̈O1 + ∂2PO1

∂vO1∂uO1

v̇O1u̇O1 + ∂2PO1

∂vO1∂vO1

v̇O1v̇O1 + ∂2PO1

∂vO1∂qO1

v̇O1q̇O1

+ ∂PO1

∂qO1

q̈O1 + ∂2PO1

∂qO1∂uO1

q̇O1u̇O1 + ∂2PO1

∂qO1∂vO1

q̇O1v̇O1 + ∂2PO1

∂qO1∂qO1

q̇O1q̇O1

− ∂SO2

∂uO2

üO2 − ∂2SO2

∂uO2∂uO2

u̇O2u̇O2 − ∂2SO2

∂uO2∂vO2

u̇O2v̇O2 − ∂2SO2

∂uO2∂qO2

u̇O2q̇O2

− ∂SO2

∂vO2

v̈O1 − ∂2SO2

∂vO2∂uO2

v̇O2u̇O2 − ∂2SO2

∂vO2∂vO2

v̇O2v̇O2 − ∂2SO2

∂vO2∂qO2

v̇O2q̇O2

− ∂SO2

∂qO2

q̈O2 − ∂2SO2

∂qO2∂uO2

q̇O2u̇O2 − ∂2SO2

∂qO2∂vO2

q̇O2v̇O2

− ∂2SO2

∂qO2∂qO2

q̇O2q̇O2. (25)

Similarly, for Equation (17) we have:

C̈n = d

dt

[(
∂nO1

∂uO1

u̇O1 + ∂nO1

∂vO1

v̇O1 + [nqO1
]q̇O1

)

+
(
∂nO2

∂uO2

u̇O2 + ∂nO2

∂vO2

v̇O2 + [nqO2
]q̇O2

)]
, (26)
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C̈n = ∂nO1

∂uO1

üO1 + ∂2nO1

∂uO1∂uO1

u̇O1u̇O1 + ∂2nO1

∂uO1∂vO1

u̇O1v̇O1 + ∂2nO1

∂uO1∂qO1

u̇O1q̇O1

+ ∂nO1

∂vO1

v̈O1 + ∂2nO1

∂vO1∂uO1

v̇O1u̇O1 + ∂2nO1

∂vO1∂vO1

v̇O1v̇O1 + ∂2nO1

∂vO1∂qO1

v̇O1q̇O1

+ ∂nO1

∂qO1

q̈O1 + ∂2nO1

∂qO1∂uO1

q̇O1u̇O1 + ∂2nO1

∂qO1∂vO1

q̇O1v̇O1 + ∂2nO1

∂qO1∂qO1

q̇O1q̇O1

+ ∂nO2

∂uO2

üO2 + ∂2nO2

∂uO2∂uO2

u̇O2u̇O2 + ∂2nO2

∂uO2∂vO2

u̇O2v̇O2 + ∂2nO2

∂uO2∂qO2

u̇O2q̇O2

+ ∂nO2

∂vO2

v̈O1 + ∂2nO2

∂vO2∂uO2

v̇O2u̇O2 + ∂2nO2

∂vO2∂vO2

v̇O2v̇O2 + ∂2nO2

∂vO2∂qO2

v̇O2q̇O2

+ ∂nO2

∂qO2

q̈O2 + ∂2nO2

∂qO2∂uO2

q̇O2u̇O2 + ∂2nO2

∂qO2∂vO2

q̇O2v̇O2

+ ∂2nO2

∂qO2∂qO2

q̇O2q̇O2. (27)

For the same reasons which lead to Equations (22) and (23), the previous equa-
tions (27) and (25) can be projected in tangent coordinates (discarding the ortho-
gonal coordinate) obtaining a linear system with four unknowns and four equa-
tions:

[ [λuv]T [0]T
[0]T [λuv]T

]
∂PO1

∂uO1

∂PO1

∂vO1

−∂SO2

∂uO2

−∂SO2

∂vO2

∂nO1

∂uO1

∂nO1

∂vO1

∂nO2

∂uO2

∂nO2

∂vO2





üO1

v̈O1

üO2

v̈O2




=
[ [λuv]T [0]T

[0]T [λuv]T
]{

Qps

Qn

}
, (28)

where Qps and Qn are the vectors of the known terms of Equations (27) and (25).
By means of the above formulation, one can solve (23) and (28) to get, respect-

ively, the parametric speeds and parametric accelerations {u̇O1, v̇O1, u̇O2, v̇O2} and
{üO1, v̈O1, üO2, v̈O2}.

In fact this works well as far as the contact-on-point does not degenerate into the
contact-on-line or contact-on-surface situations, where the matrices of coefficients
become ill conditioned. This happens, for example, when a shaft is inserted into a
cylindric hole with exactly the same diameter. Hence singular situations must be
carefully monitored and handled.

Once one has obtained {u̇O1, v̇O1, u̇O2, v̇O2} and {üO1, v̈O1, üO2, v̈O2}, it is easy to
update the equations of the point-on-plane holonomic constraint. As described in
the introduction, such condition consists in a plane (whose position, speed and
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acceleration about body O1 are known) which constraints a point belonging to
object O2 (also position, speed and acceleration of this point about O2 must be
known).

Note that Equations (23) and (28) provide speeds and accelerations in para-
metric coordinates, while the point-on-plane constraint formulation needs body-
relative cartesian speeds and accelerations, like ṖO1,O1, P̈O1,O1, etc. It is easy, however,
to compute these terms as functions of parametric speeds and accelerations, given
the expression of the parametric surfaces:

PO1,O1 = PO1,O1 (uO1, vO1) , (29)

SO2,O2 = SO2,O2 (uO2, vO2) , (30)

it follows:

ṖO1,O1 = u̇O1

∂PO1,O1

∂uO1

+ v̇O1

∂PO1,O1

∂vO1

, (31)

ṠO2,O2 = u̇O2

∂SO2,O2

∂uO2

+ v̇O2

∂SO2,O2

∂vO2

, (32)

and similarly, for the accelerations:

P̈O1,O1 = üO1

∂PO1,O1

∂uO1

+ v̈O1

∂PO1,O1

∂vO1

+ u̇O1
2 ∂2PO1,O1

∂uO1∂uO1

+ v̇O1
2 ∂

2PO1,O1

∂vO1∂vO1

+ 2u̇O1v̇O1

∂2PO1,O1

∂uO1∂vO1

, (33)

S̈O2,O2 = üO2

∂SO2,O2

∂uO2

+ v̈O2

∂SO2,O2

∂vO2

+ u̇O2
2 ∂2SO2,O2

∂uO2∂uO2

+ v̇O2
2 ∂2SO2,O2

∂vO2∂vO2

+ 2u̇O2v̇O2

∂2SO2,O2

∂uO2∂vO2

. (34)

The partial derivatives in Equations (31), (32), (33) and (34), can be obtained by
straightforward numerical differentiation of Equations (29) and (30).

Note that we can distinguish two components for the P ,S accelerations of
Equations (33) and (34):

P̈O1,O1 = P̈O1,O1‖ + P̈O1,O1⊥,

S̈O2,O2 = S̈O2,O2‖ + S̈O2,O2⊥. (35)

The terms S̈O2,O2‖ and P̈O1,O1‖, depending on parametric tangential accelerations ü, v̈
only, can be called tangential components since from Equations (33) and (34) it
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is easy to see that these vectors are always directed tangentially to the contact
surfaces.

P̈O1,O1‖ = üO1

∂PO1,O1

∂uO1

+ v̈O1

∂PO1,O1

∂vO1

, (36)

S̈O2,O2‖ = üO2

∂SO2,O2

∂uO2

+ v̈O2

∂SO2,O2

∂vO2

. (37)

The terms S̈O2,O2⊥ and P̈O1,O1⊥, depending on parametric tangential speeds u̇, v̇ only,
can be called centripetal components (note some analogies with tangential and
centripetal accelerations for classical two-dimensional mechanics).

P̈O1,O1⊥ = u̇O1
2 ∂2PO1,O1

∂uO1∂uO1

+ v̇O1
2 ∂

2PO1,O1

∂vO1∂vO1

+ 2u̇O1v̇O1

∂2PO1,O1

∂uO1∂vO1

, (38)

S̈O2,O2⊥ = u̇O2
2 ∂2SO2,O2

∂uO2∂uO2

+ v̇O2
2 ∂2SO2,O2

∂vO2∂vO2

+ 2u̇O2v̇O2

∂2SO2,O2

∂uO2∂vO2

. (39)

Now, one can see that the tangential terms do no affect at all the computation
of acceleration terms of the ‘point on plane’ constraint (that is, inserting S̈O2,O2‖
and P̈O1,O1‖ in Equation (9) gives always a null vector when position constraint is
already satisfied). This means that only the centripetal terms have true significance
for the ‘point-on plane’ constraint.

In detail, this is very important for the practical implementation of the sliding
plane method in a dynamical simulator: in fact the computation of the constraint
vector qx as in Equation (9) can take q̈xP = P̈O1,O1⊥ and q̈xS = S̈O2,O2⊥ instead
of q̈xP = P̈O1,O1 and q̈xS = S̈O2,O2, with identical results. Since tangential terms
equations (36) and (37) are not needed, there is no need to solve the system (28)
for parametric accelerations: this has a positive impact on computation speed and,
most important, on the ability to solve for unknown rigid body accelerations during
dynamics.

In fact this consideration saves us from a potential tautology: the multibody
dynamical solution includes the rheonomic constraint of Equation (9) in order to
solve for unknown bodies’ accelerations, but the term (9) itself contains motion
laws of references P,S which, among all other things, seem to be functions of body
accelerations in their turn, as given in Equation (28). However, this ‘deadlock’
situation is resolved by the above mentioned consideration, that only the centripetal
(speed-dependent) part of PO1, SO2 references has effect on the term equation (7) of
the point-on plane constraint. That is, we do not need the a-priori knowledge of
body accelerations in order to compute all the terms of the sliding plane constraint
in the dynamical solution problem: speed knowledge is enough.
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Figure 4. Integration scheme (simplified flowchart).

5. Implementation

An efficient approach to the solution of the DAE (differential algebraic) problem
of constrained Lagrangian dynamics is discussed in [12]. The solution scheme ex-
posed in Figure 4 relies on that method, which includes two constraint-stabilizing
steps per each integration step of the underlying ODE problem. Note that, among
all the constraints equations, there is always the contact constraint expressed as a
‘point on plane’ condition. During the iterative Newton–Raphson procedure, the
problem of updating the position of the ‘sliding plane’ (step A2) is uncoupled from
the constraint closure problem (step A1), and both are executed at each iteration
one after the other. This causes a simple implementation, while convergence of the
method is still good as if A1 and A2 problems were coupled.

Later, having obtained the correct orientation and position for the sliding plane
constraint, the speed closure of constraints can be easily solved too (step B1).
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We remark that, once positions and speeds of multibody state are correct, one
can compute Equations (23), (31) and (32), as well as (38) and (39) without prob-
lems (step B2), then obtaining all the information about the speed and centripetal
acceleration of the references PO1 and SO2 which are used to represent the sliding
plane constraint.

In fact the computation of unknowns accelerations for a given state (step C) can
take place only if the kinematics of PO1 and SO2 are correct in terms of both posi-
tions, speeds and accelerations: again we stress the point that only the centripetal
parts of references’accelerations (depending only on parametric speeds of Equa-
tion (23)) is required in Equation (9) of the lock formulation, while the tangential
part of acceleration (which depends from Equation (28)) has no effect at all on that
constraint.

Therefore, only after step C, one may compute also Equations (28), (33) and
(34) in order to get also the complete accelerations of contact points (i.e. including
tangential effect), if needed.

Although we presented the sliding plane approach within the framework of
Figure 4, it should be clear that this way of handling contacts could be implemen-
ted with minimum efforts in other integration schemes, either explicit or implicit.
Given the hypothesis of previous chapters, the correctness of our approach within
other integrators can be guaranteed only if, for whatever change in system state,
tangency of contact surfaces is always satisfied before computing the ‘acceleration
effects’ in step B2. This means that, for each update of the system’s state performed
by a generic integrator, also the position and inclination of contact plane SO2 and
PO1 must be updated. In fact curvature and tangency of surfaces may change from
step to step, during motion.

Summing up, steps A2 and B2 must be performed in sequence, right after
each change in system state: having satisfied this requirement, the computation
of unknown accelerations for the given state will be always correct, and the integ-
ration process can proceed. In general, the solution provided by the sliding plane
approach is exact (not approximate) from a cinematical point of view: however
a loss of precision can take place when the partial derivatives in Equations (23),
(38), (39) cannot be recovered analytically and must be obtained via numerical
differentiation.

We made the simplificative assumption that each body has a single boundary
surface with continuous parametrization in (u, v), but this is seldom true when
using three-dimensional models coming from CAD applications, where the bound-
ary of each body may be built of many surface patches, each with its own (u, v)

parametrization (hence the so called B-Rep, Boundary Representation).
Under these circumstances the computation of the linear systems (23) and (28)

may become difficult: the many parametric differentiations which are needed to
recover the coefficients could be numerically ill-conditioned or hard to perform
[13]. For example, straightforward numerical differentiation of surfaces can be
troublesome in proximity of trimmed patches, across singularities caused by neigh-
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Figure 5. Contacts between topological entities of the boundary representation (B-Rep).

Figure 6. Cam-follower benchmark for contact between freeform surfaces.

boring faces in B-rep topology, when using Catmull-Clark limit surfaces, and so
on.

Also, a robust and complete code should be able to handle the six different types
of contact between all the connective elements of boundary representations (edges,
faces, vertexes) as in Figure 5. Of course in this work we dealt only with the case of
‘curved face on curved face’, but the other five cases can be developed in a similar
way.

6. Examples

6.1. CAM-FOLLOWER

To validate the model of contact, we built a simple cam-follower mechanism using
the three-dimensional modelling environment of our multibody software. The cam
and the follower are made of NURBS bi-parametric surfaces (Figure 6).
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Figure 7. Comparing the two motion laws: exact (analytical original) and simulated motion
of follower (moved by contact): they overlap perfectly. Also the speed profile of simulated
motion coincides exactly with the analytical profile. Note some high frequency numerical
noise on acceleration.

In detail, the shape of the cam has been created with a procedural modelling
tool which uses the formulas in [7], where one gets the profile as a function of the
motion law imposed to the follower. Therefore, using a test motion law, we built
the cam surface for that motion, using 200×4 control points (the more the samples,
the less the approximation).

We performed the simulation of the mechanism, and compared the resulting mo-
tion of the follower (moved only by contact) with the hypothetical ‘exact’ motion
law that we used to build the cam. We observed little or no differences in position
and speed of the follower, but sometimes a small noise can affect acceleration
(Figure 7) mostly because the cam does not have an analytical shape, but it is
approximated by fifth-degree Nurbs.

6.2. WHEEL ON PLANE

We can check the correctness of the sliding plane approach by testing it on a simple
planar problem whose analytical solution is well known. This can be the case of a
wheel on a plane, where the horizontal position of the spindle is fixed (Figure 8).
The wheel can have a rotation qθ , thus slipping on the plane. The contact point SO2
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Figure 8. A contact problem in two-dimensional space: the wheel on plane.

moves on the horizontal ground, while the other point of contact PO1 belongs to the
wheel and moves along its circumference.

Of course it is known, from classical mechanics, that the constraint on vertical
acceleration of the spindle is simply q̈y = 0. By using the sliding plane ap-
proach, we could consider the wheel circumference as function of a circumferential
parameter uO1 in [0..1]. Also wheel normal would be a function of uO1, then:

PO1 = Dx[R + R sin(2πuO1 + qθ )] + Dy[R + qy − R cos(2πuO1 + qθ )],
nO1 = Dx sin(2πuO1 + qθ ) − Dy cos(2πuO1 + qθ ). (40)

With this simplified example, where there is only q̇θ as speed, Equation (23)
becomes a simple 2 × 2 linear system of the type:[

R2π 1
2π 0

][
u̇O1

u̇O2

]
=
[−Rq̇θ

−q̇θ

]
, (41)

providing the solutions u̇O1 = −q̇θ /2π and u̇O2 = 0 as expected. Using Equa-
tion (31) we get the speed of contact point in wheel rotating reference, that is
ṖO1,O1 = −Dx · R · q̇θ . Also, by Equation (32), we get ṠO1,O1 = 0.

Now we must use Equation (38) to get the centripetal part of the acceleration of
contact point P , inO1 reference. Performing all the derivatives and simplifications,
we get:

P̈O1,O1⊥ = u̇O1
2 ∂

2PO1, O1

∂uO1∂uO1

= Dy · R · q̇2
θ , (42)

which looks like the classical equation of centripetal acceleration for a point on a
circular trajectory, ac = R · ω2.

Now we have all the variables that are needed for the solution of unknown
accelerations. In this simple example, the lock formulation introduces a ‘point on
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Figure 9. Four-bar linkage with clearance in a revolute pair.

Figure 10. Clearances. Comparison between our method and the ‘massless link model’.

plane’ constraint which leads to the following linear system, with a single equation
and a single unknown acceleration: [Cq]q̈y = Qx . Applying Equation (8) and sim-
plifying, the Jacobian becomes a 1×1 matrix, with value [Cq] = [1]. Equation (9),
after many simplifications, becomes:

Qx = q̇θ
2R − 2q̇θ

2R + q̇θ
2R = 0 (43)

Hence the solution of [Cq]q̈y = Qx gives exactly q̈y = 0, as expected.

6.3. CLEARANCE IN A CONTACT PAIR

Although aimed at the most general case of arbitrary three-dimensional contacts,
the sliding plane approach can handle also the simpler two-dimensional problem
of contact between hole and shaft in a revolute joint with some clearance, as in the
four-bar mechanism of Figure 9.

Usually, the clearance effect is simulated by replacing the contact between the
two circles with a massless link which joins the two centers (Figure 10) since this
constraint has the same effect in terms of positions, speeds and accelerations [14].
We will compare our more general approach with such massless-link model.

For the sake of conciseness, we assume that either the constraint on mutual po-
sitions and speeds have been already satisfied. This means that steps A1, A2, B1 of
Figure 4 are already solved, while accelerations are still to be found. Using the local
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coordinate system of Figure 9, and considering that speed and position constraints
are already satisfied, we can write the coordinates of the two circumferences using
the few mutual state coordinates which are left free, that is q = {xO1, αO1, xO2, αO2}:

PO1 = Dx[xO1 + R1 sin(2πuO1 + αO1)] + Dy[R1 − R1 cos(2πuO1 + αO1)],
nO1 = Dx[− sin(2πuO1 + αO1)] + Dy[cos(2πuO1 + αO1)],
SO2 = Dx[xO2 + R2 sin(2πuO2 + αO2)] + Dy[R2 − R2 cos(2πuO2 + αO2)],
nO2 = Dx[sin(2πuO2 + αO2)] + Dy[− cos(2πuO2 + αO2)]. (44)

Given that mutual speeds are already known (coming from step B1), the speed
state is q̇ = {ẋO1, α̇O1, ẋO2, α̇O2} and Equation (23) becomes a simple 2 × 2 linear
system of the type:[+R12π −R22π

−2π +2π

][
u̇O1

u̇O2

]
=
[−R1α̇O1 − ẋO1 + R2α̇O2 + ẋO2

α̇O1 − α̇O2

]
, (45)

providing the solutions for unknown speeds of parameters u̇O1, u̇O2:

u̇O1 = 1

2π

ẋO2 − ẋO1

R1 − R2
− α̇O1

2π
,

u̇O2 = 1

2π

ẋO2 − ẋO1

R1 − R2
− α̇O2

2π
. (46)

Given u̇O1, u̇O2, it is possible to use Equation (38) to get the centripetal part of
the acceleration of contact point P , in O1 reference. Performing derivatives and
simplifications, we obtain:

P̈O1,O1⊥ = Dy · R1

(
(ẋO2 − ẋO1)

2

(R1 − R2)
2 + α̇O1

2 − α̇O1

(ẋO2 − ẋO1)

(R1 − R2)

)
, (47)

S̈O2,O2⊥ = Dy · R2

(
(ẋO2 − ẋO1)

2

(R1 − R2)
2 + α̇O2

2 − α̇O2

(ẋO2 − ẋO1)

(R1 − R2)

)
. (48)

These terms must be introduced in lock formulation equations (8) and (9) in
order to compute the Jacobian matrix [Cq] and the known part Qx of equation
[Cq]q̈ = Qx . Having [Cq] and Qx for the sliding constraint, the system can be
solved for unknown accelerations with usual methods.

Note that [Cq] and Qx does not change for cases with same radial clearance
e = R1 − R2. To the limit, for R2 = 0 and R1 = e, the relative speed in contact
point is vre = ẋO2−ẋO1−R1α̇O1, and Equations (47) and (48) become much simpler:

S̈O2,O2⊥ = 0, P̈O1,O1⊥ = Dy
(
v2
re/e

)
. (49)

It is easy to see that this corresponds to the equation introduced by a massless link
with length e which joins the two centers. In fact we performed simulations using
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Figure 11. A contact problem in three-dimensional space: a spherical Geneva wheel.

either the massless link model and the sliding plane model, obtaining identical
results (Figure 10).

Even if the massless link model may have a simpler formulation, we demon-
strated that our approach is a more general method which can reproduce this special
case, still being able to describe even more complex situations such as, for example,
clearances for ovalized shafts and holes.

6.4. SPHERICAL GENEVA WHEEL

The device of Figure 11 is a spherical Geneva wheel, and can be used to achieve a
special type of intermittent motion. The contact happens between three-dimensional
surfaces, and we tested the sliding plane method with this complex example. Note
that the simulation code must implement advanced features such as the handling of
multiple contact points and monolateral constraints. The simulation provided the
rotation β of the wheel as a function of crank angle α: the wheel advances with
angular strokes βs = π/2 and dwell period αd = π , as expected.

7. Conclusions

An approach has been proposed for the multibody simulation of sliding contact
between freeform surfaces. The geometric constraint has been represented by means
of a tangential plane which moves between the contact bodies, hence only a simple
‘point on plane’ constraint had to be added to the system of motion-equations.
On the other side, the problem of computing the auxiliary variables of the contact
constraint (position, speed and acceleration of contact point) could be solved sep-
arately, mostly for sake of better performance. The theoretical result have been im-
plemented into our general-purpose multibody software and have been successfully
tested with real world examples. Future development may embrace the application
of these results to non-parametric surfaces and the problem of high-performance
collision detection.
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