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Abstract

This paper describes a numerical method for the parallatisol of the differential measure inclusion problem posed
by mechanical multibody systems containing bilateral amithteral frictional constraints. The method proposed has
been implemented as a set of parallel algorithms leveragWi@IA's Compute Unified Device Architecture (CUDA)
library support for multi-core stream computing. This aliathe proposed solution to run on a wide variety of GeForce
and TESLA NVIDIA graphics cards for high performance conipgit Although the methodology relies on the solution
of cone complementarity problems known to be fine-grainetkims of data dependency, a suitable approach has
been developed to exploit parallelism with low overheadeinms of memory access and threads synchronization.
Since stream multipocessors are becoming ubiquitous asdaed components of next-generation graphic boards,
the solution proposed represents a cost-efficient way talabathe time evolution of complex mechanical problems
with millions of parts and constraints, a task that useddaoire powerful supercomputers. The proposed methodology
facilitates the analysis of extremely complex systems sisofranular material flows and off-road vehicle dynamics.

Keywords: Dynamics, GP-GPU programming, friction, CUDA, multibody.
Introduction

The development of parallel algorithms for simulationdzhscience and engineering has represented one of the
most complex challenges in the field of numerical computibntil recently the massive computational power of
parallel supercomputers has been available to a relatsmigll number of research groups in a select number of
research facilities, thus limiting the number of applioat approached and the impact of high performance computing

This scenario is rapidly changing due to a trend set by géperpose computing on the graphics processing
unit (GPU). The libraries CUDA from NVIDIA and CTM from ATI &w one to use the streaming microprocessors
mounted in high-end graphics cards as general-purposeutorghardwaré. In the last two years these micropro-
cessors evolved from basic arrays of graphics units capdldrecuting simple 3D shading programs on each pixel
of the frame buffer to full-featured multiprocessors useddcientific computing. Presently, the raw computational
power of these multiprocessors (such as the GT200 from NA)JBan reach one Teraflop, that is hundreds of times
the throughput of a modern scalar CPU. This is achieved thamkhe large array of scalar units working in parallel
and each following a Single Instruction Multiple Data (SIMmaradigm.

GP-GPU computing has been very vigorously promoted by NX¥IBihce the release of the CUDA development
platform in early 2007. CUDA [1] is an application interfafo software development targeted to run on the G80
family of GPUs. A large number of scientific applications teen developed using CUDA, most of them dealing

IHence the name GP-GPU (General Purpose Graphical Procéssigvhich is often used to denote this computational payadi



with problems that are quite easily parallelizable such aaular dynamics or signal processing. Very few GP-GPU
projects are concerned though with the dynamics of mulgilsydtems and the two most significant are the Havok and
the Ageia physics engines. Both are commercial and prapyidibraries used in the video-game industry and their
algorithmic details are not public. Typically, these plogsengines trade precision for efficiency as the prioritynis i
speed rather than accuracy. In this context, the goal ofwtbik was to implement a general-purpose multibody solver
on GP-GPU multiprocessors backed by convergence resaligtiarantee the accuracy of the solution. Specifically,
a parallel version was implemented of a humerical schemsepted in [2, 3], which can robustly and efficiently
approximate the bilaterally constrained dynamics of rlgadiies undergoing frictional contacts.

The field of numerical methods for the simulation of multigoslystem in the presence of friction and con-
tact/impact phenomena is an area of active research. Respltrted in [4] indicate that the most widely used com-
mercial software package for multibody dynamics simutations into significant difficulties when handling simple
problems involving hundreds of contact events, whereasscagth thousands of contacts become intractable. The
method embraced in this work can solve efficiently probleritk millions of contacts on a simple scalar CPU of the
Pentium family, and improved performance can be obtaindil the GP-GPU version proposed herein.

Unlike the so-called penalty or regularization methodserghthe frictional interaction can be represented by a
collection of stiff springs combined with damping elemethiat act at the interface of the two bodies [5, 6, 7, 8], the
approach embraced herein relies on a different matherhéticaework. Specifically, the algorithms rely on time-
stepping procedures producing weak solutions of the difféal variational inequality (DVI) problem that describe
the time evolution of rigid bodies with impact, contactcfidn, and bilateral constraints. When compared to penalty-
methods, the DVI approach has a greater algorithmic coritpléxit avoids the small time steps that plague the former
approach.

Early numerical methods based on DVI formulations can beettdback to [9, 10, 11], while the DVI formulation
has been recently classified by differential index in [12pcBnt approaches based on time-stepping schemes have
included both acceleration-force linear complementamitblem (LCP) approaches [13, 14, 15] and velocity-impulse
LCP-based time-stepping methods [16, 17, 18, 19]. The LGBtajned as a result of the introduction of inequalities
in time-stepping schemes for DVI, coupled with a polyhedyabroximation of the friction cone must be solved at
each time step in order to determine the system state coafignras well as the Lagrange multipliers representing
the reaction forces [10, 16]. If the simulation entails @yganumber of contacts and rigid bodies, as is the case of
part feeders, packaging machines, and granular flows, th@utional burden of classical LCP solvers can become
significant. Indeed, a well-known class of nhumerical methfmt LCPs based osimplex methodsalso known as
direct or pivoting methods [20], may exhibit exponential worst-case compjggil]. They may be impractical even
for problems involving as little as a few hundred bodies wirgetion is present [22, 23]. Moreover, the three-
dimensional Coulomb friction case leads to a nonlinear dempntarity problem (NCP): the use of a polyhedral
approximation to transform the NCP into an LCP introducei$ical anisotropy in friction cones [16, 15, 17]. This
discrete and finite approximation of friction cones is onghaf reasons for the large dimension of the problem that
needs to be solved in multibody dynamics with frictional tza.

In order to circumvent the limitations imposed by the uselasical LCP solvers and the limited accuracy asso-
ciated with polyhedral approximations of the friction coaeparallel fixed-point iteration method with projection on
a convex set has been proposed, developed, and tested ihH8]method is based on a time-stepping formulation
that solves at every step a cone constrained optimizatioblggm [24]. The time-stepping scheme has been proved
to converge in a measure differential inclusion sense tdtthation of the original continuous-time DVI. This paper
illustrates how this problem can be solved in parallel byleXipg the parallel computational resources available on
NVIDIAs GPU cards.

Formulation of Multibody Dynamics

The formulation of the equations of motion, that is the eiumstthat govern the time evolution of a multibody system,
is based on the so-called absolute, or Cartesian, repedenof the attitude of each rigid body in the system.

The state of the system is denoted by the generalized pusijio= [r7, ], ... ,rfb,ezb]T € R™ and their
time derivativesy = [i],¢],... 17 , éZb]T € R™, wheren,, is the number of bodies;; is the absolute position

of the center of mass of theth body and the quaterniors are used to represent rotation and to avoid singularities.
However, instead of using quaternion derivativesyjrit is more advantageous to work with angular velocitieg th

method described will use the vector of generalized vebsit = [i{,of,... 1% ol ]T € R%%. Note that the
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generalized velocity can be easily obtainedjas L(q)v, whereL is a linear mapping that transforms eaghinto
the corresponding quaternion derivatéfeby means of the linear algebra formula= %GT(q)(Di, with 3x4 matrix
G(q) as defined in [25].

Given the velocities considered, for a systennigid bodies the generalized mass mafkikremains constant and
diagonal. Denoting by (¢, q,v) the set of applied, or external, generalized forces, thergkorder differential
equations that govern the time evolution of the multibodstesn expressed in matrix notation assume the fivfsn =
f4(t,q,v).

Bilateral constraints

Bilateral constraints represent kinematic pairs, for gg@spherical, prismatic or revolute joints, and can be esged
as holonomic algebraic equations constraining the r@atosition of two bodies. Assuming a $g0f constraints is
present in the system, they lead to a collection of scalaatiaus:

U,(q,t) =0, icB. 1)

For instance, a ball joint requires three of these scalaatimns. Assuming smoothness of constraint manifold,
W,(q,t) can be differentiated to obtain the Jacobiany; = [0¥, /dq]” .

All bilateral constraints must also be satisfied at the vigldevel. This requirement stems from the full time-
derivative of thei-th constraint equation:

— =0 =V,Y; =V,¥; L =0
dt T gt g T VaViat g = Vel Ly £
Defining

VUl =V, ¥ L(q) @)

the constraints are consistent at velocity-level provitfedfollowing equation is satisfied:

ov;

vl L= 3
i V+ o 3)

Note that the‘% is nonzero only for rheonomic constraints (motors, actisaimposed trajectories).

Unilateral constraints

Given a large number of rigid bodies with different shapesdern collision detection algorithms are able to find
efficiently a set of contact points, that is points whegaga function®(q) can be defined for each pair of near-enough
shape features. Where defined, such a gap function musyshatsion-penetration conditiah(q) > 0 for all contact
points.

Note that a signed distance function, differentiable astieg to some value of the interpenetration [26], can
be easily defined if bodies are smooth and convex [27]. Howeéhes is not always possible, for instance when
dealing with concave or faceted shapes often used to rapirpaets of mechanical devices. In this case the gap
function ®(q) can be non-smooth or not well defined. Without loss of geitgrdbr sufficiently small penetration,
the following assumption can be made on the geometricakt@nts: any contact is described by a gap functiqn)
that is twice continuously differentiable. Most often, whene deals with convex geometries and small numerical
integration step-sizes, this assumption is easily verifitlle proposed implementation uses the robust and efficient
Gilbert-Johnson-Keerthi (GJK) algorithm [28] to find thentact points between convex shapes

Friction

Friction is introduced for each unilateral contact coristriaresent in the multibody system. When a confastctive,
thatis®;(q) = 0, a normal force and a tangential force act on each of the twiebat the contact point. We use the

2An efficient way to deal with concave geometries is to repretiemn as clusters of smaller convex shapes, performing a eeegomposition
before the simulation starts. In this way, the GJK algorittam be used on the convex subparts, for most geometries witigmifiGant impact on
the robustness of the method.



classical Coulomb friction model to define these forces.[ifhe contact is not active, that §;(q) > 0, no friction
forces exist. This implies that the mathematical desaiptf the model leads to a complementarity problem [16].
Given two bodies in contact and B, let n; be the normal at the contact pointing toward the exteriohefliody of
lower index, which by convention is considered to be bddy et u; andw; be two vectors in the contact plane such
thatn,;, u;, w; € R are mutually orthonormal vectors.
The frictional contact force is impressed on the system bgmaef multipliersy, ,, > 0, %; ., andy; ,,, which lead
to the normal component of the forEg x = 7; ,,n; and the tangential component of the folter = 7; o, Ui +7; 0 Wi.
The Coulomb model imposes the following nonlinear constsai

ﬁy\i,n > Oa ‘I%(OI) Z O» (I)l(q)az,n - 0»

A 2 PRt s Ivirll (fin = 32, +72,) =0,

(Fir,vir) = —|[Fir| [|[virll

wherev; 1 is the relative tangential velocity at contact Defining by (, ) the inner product of two vectors, the
constraint(F; r,v; vy = —||F;.r|| ||vi,r|| requires that the tangential force be opposite to the tai@emlocity.
Note that the friction force depends on the friction coeffiti,; € R™. The original Coulomb model distinguishes
between statig:; and kineticy, friction coefficients. For simplicity, in this paper an asgution is made that these
coefficients are the same. If needed, it is possible to extemdchethod to make this distinction or also consider more
complex constitutive equations such as the Stribeck dncthodel [29].

The first part of the constraint can be restated as

F,=F;,n+F, v =7, .0, + 79y +Yi0wwW; € T, 4)

whereY is a cone in three dimensions, whose slopgais™! ;. This results in the friction force being dissipative.
An equivalent convenient way of expressing this constiigiby using the maximum dissipation principle:

Fius Vi) = argmin - v (Vi + Y0 W) - (5)

VAR WA W SHiTi

In fact, the the first-order necessary Karush-Kuhn-Tuckeddions [30] for the minimization problem (5) correspond
to the Coulomb model above [31, 11].

The overall model

We assume that at timeseveral bodies are touching, interpenetrating or sepghitajea distance smaller than a
thresholdy > 0, so that a setl of relevant contact constraints can be assembled:

A(q,0) ={ilie{1,2,...,p}, Pi(q) <},

Shapes which are separated by larger distances thantkieshold are not considered for frictional contact arialys
to avoid a wasting of computational resources.

It is also assumed that there is a set of active bilateraltr@ings B, acting on the rigid bodies. Each constraint
i € B transmits reactions to the connected bodies by means oftipliauly; ;.

Considering the effects of botd(q, §) frictional contacts and bilateral constraints, the time evolution of the
dynamical system is governed by the following differenfabblem with set-valued functions and complementarity
constraints, which is equivalent to a diferential varintibinequality [32]:

q = L(qv
Mv = f (ta qQ, V) + Z (ﬁi,n D’i,n + ai,u D?,u + :Y\i,w Di,w) + Z ﬁiabv\yi
i€A(q,0) i€eB
ieB : Yi(q,t)=0 (6)
i€ .A(q, 5) : /’}/\im >0 L @z(q) >0, and
(:Y\i,ua /'?i,w) = argmin VT (:Y\i,u Di,u + ;}/\i,w Di,w)

1i¥in > Fiu)2+Fi,w)?
The tangent space generatdds = [D, ,,, D; ., D; ,,] € R6"*3 are defined as

D/ =[0 ... —AT AT Ass;4 0 ... 0 Al —-Al Aps;p ... 0], (7



i-th contact

z

Figure 1: Contact between two bodied, B € {1,2,...,n,}

where we use\,; , = [n;,u,;, w;] as theR3*3 matrix of the local coordinates of thi#h contact, and introduce
the vectorss; 4 ands; g for representing the contact point positions in body-iedatoordinates, as illustrated in
Figure (1).

The Coulomb model used in this work is the predominant mosletiun the engineering literature to describe dry
friction. Unfortunately, the model may be inconsistenerthexist configurations for which the resulting problemsdoe
not have a solution [13, 19]. This situation has led to thedrteeexplore weaker formulations where the forces are
measures and Newton’s law is satisfied in a measure diffatémtlusion sense [19]. It has been shown that solutions
in that sense do exist and can be found by time-stepping sEh{38].

Time-stepping scheme

We formulate the dynamical problem in terms of measure whfféal inclusions [19], whose numerical solution can
be obtained using the following time-stepping scheme basetthe solution of a complementarity problem at each
time step.

Given a positiomg" and velocityv(®) at the time-step(?), the numerical solution is found at the new time-step
t(+1) =+ 4 h, by solving the following optimization problem with equitiom constraints [2]:

M(V(l+1) - v(l)) = hf(t(l)v q(l)a V(l)) + Z (IYZ,n Di,n + Yiu Di,u + Yi,w Di,w) + Z ’Vi,bv\:[lia (8)
i€A(qM,8) i€B
1 ov;
ieB W (qW, ) + vuTyU+D L 22— 9)
h ot
1 .
ie A(gW,d) 0< Eéi(q(l)) + D! vt 147 >0, and (10)
(’Yi,ua ’Yi,w) = argmin VT (’Yl,u Di,u + Yi,w Di,w) 5 (11)
BiYi,n 2/ V2w
gt = qO® 4+ hL(q(l))v(lH). (12)

Here,, represents the constraint impulse of a contact constthattis,y, = h7,, for s = n, u, w. The%@i(q(”)
term achieves constraint stabilization, and its effectiscussed in [34]. Similarly, the terré@i(q(”) achieves



stabilization for bilateral constraints. The scheme cayese to the solution of a measure differential inclusion] [24
when the step sizk — 0.

Several approaches can be used to solve (8)-(11). Someasstiggested to approximate friction cones as faceted
pyramids, so that the system of equations above, origimaNpnlinear Complementarity Problem (NCP), turns into a
Linear Complementarity Problems (LCP) [17]. The resulti@Ps are solved using algorithms based on the so-called
pivoting methods or simplex methods. These numerical gmes that belong to the class of direct methods are
computationally expensive, and their complexity class ithe worst case exponential [22].

Alternatively, the problem is cast as a monotone optimiraproblem by introducing a relaxation over the com-
plementarity constraints. Specifically, the time-stegmnheme is modified by replacing Eq. (10) with

1 .
i€ Ag",0):0< 5 ®i(q") + D, v - ui\/(vT D; )+ (vID;w)? L7, >0, (13)

Nonetheless, a8 — 0 the solution of the modified time-stepping scheme will apgtothe solution of the same
measure differential inclusion as the original scheme.[24]

It has been shown [3] that the modified scheme is a Cone Coneplamity Problem (CCP), which can be solved
efficiently by a family of iterative numerical methods thatyron projected contractive maps. One such algorithm is
discussed below; it fits well into a parallel computing pagadsince it requires little data interdependency, sirhjlar
to a projected-Jacobi fixed-point method. Omitting for lixegome of the details discussed in [3], the algorithm
makes use of the following vectors:

k = MvY 4 pf® qW, v0) (14)
1 T

b = {Efm(q@),o,O} i€ A(q",0), (15)
1 ov,

bz' = —\Ifj (l)t ! ) 16
h’(q’)Jrat’ ieB (16)

The solution, in terms of dual variables of the CCP (the mpliéis), is obtained by iterating the following steps
until convergence:

Vi e A(q",6) :
Srtt = AT —wn | DIMTY > DAL+ VIAL+k| +Db (17)
z€A(g,6) zeB
it = Ay, (07TY) + (1= My (18)
VieB:
O = AT —wn [VUTMTH [ YT DAt VULt k| 4 b (19)
2€A(qD,8) z€B
W= AT =) (20)

The iterative process uses the projection opeddtox-) [2], which is a non-expansive mapy, : R® — R3 acting
on the triplet of multipliers associated with tih contact. Thus, if the multipliers fall into the frictiarone, they are
not modified; if they are in the polar cone, they are set to;zarthe remaining cases they are projected orthogonally
onto the surface of the friction cone.

The overrelaxation factav and the\ andn parameters are adjusted to control the convergence. Gdadlde
values fory aren; = 3/Tracd DI M~ D;) fori € A(¢),6), andy; = 1/(VOI M~V ;) for i € B. When dealing
exclusively with bilateral constraints these choices leetthe classical Jacobi fixed-point method. In regards &md
A, extensive numerical experiments suggest that choaesirg 0.3 and\ = 1 typically leads to good convergence
speed. The interested reader is referred to [3] for a protdf@tonvergence of this method.

Note that using Egs.(8) and (14), one can rewrite the itnati a more compact form:

Vie A(g",6) : I =My, [ —wni (DFVT+bi)] + (1= A (21)

K2

VieB At = X[ —wn (VIIVT+0)] + (1= M) (22)



In this case, at each iteration, before repeating (21) a®y ¢2locitiesv(!*1) are updated as

Yl B ST EES S @
2€A(qgW,6) z€EB

Note that the superscrigt + 1) was omitted for brevity.

Good accuracy in the CCP solution is typically obtainedrdéies than one hundred iterations. Note that iterating
through (21), (22) and (23), also yields the primal variabftine velocities) at the end of the procedure with no
additional effort.

The following pseudocode of Algorithm 1 shows how the iterats implemented on a serial computing architec-
ture:

Algorithm 1: Inner Iteration Loop
. Fori € A(q, §), evaluatey; = 3/Tracd DYM~! D,).
Fori € B, evaluatey;, = 1/(V® M~V ;).

=

Warm start: if some initial guesg' is available for multipliers, then st = ~*, otherwisey? = 0.

Initialize velocitiesv® = 3, , M1 D70 + 3, s M1 Vd;;,0 + M~ k.

o b oD

Fori € A(q¥), §), compute changes in multipliers for contact constraints:
W =My, (7] —wni (DIv" +by)) + (1= A7 ;
At =yt — 7
Av; = M-! DiA’}/;‘-i_l.

6. Fori € B, compute changes in multipliers for bilateral constraints
=N (0 —wns (VETVT 4 0:)) + (1= A7
At =t 7
Av; = M7V, AT

7. Apply updates to the velocity vector:
vitl =7 + ZiGA Avi + ZiGB AVi

8. r := r + 1. Repeat from 5 until convergence, or until> 7,4

The stopping criterion is based on the value of the velogityate. The overall algorithm that provides an approx-
imation to the solution of Egs. (8) through (12) relies onaithm 1 and requires the following steps:

Algorithm 2: Outer, Time-Stepping, L oop
1. Sett = 0, step countel = 0, provide initial values foy® andv®.

2. Perform collision detection between bodies, obtainingpossible contact points within a distanteFor each
contacti, computeD; ,,, D, ,, D, ,,; for each bilateral constraint compute the resid@ialq), which also
providesb;,.

. For each body, compute forcgg®, q¥, v(¥).
. Use Algorithm 1 to solve the cone complementarity probéewm obtain unknown impulsgand velocityy (‘1)

. Update positions using(‘t1) = q() + hL(q®)v+1),

D 01~ W

. Increment :=t + h,l := [ + 1, and repeat from step 2 untit> t.,q

These two algorithms have been implemented on serial cangpatchitectures and proved to be reliable and
efficient. In the following the time-consuming part of thetimedology, that is the CCP iteration of Algorithm 1, will
be reformulated to take advantage of the parallel compu&agurces available on commodity GPUs.



Parallel computation on the GPU

Currently, high-end GPUs offer floating-point parallel qmuiting power close to one Teraflop, thus exceeding those
of multi-core CPUs. This computational resource, usuadlyoded to the execution of pixel shading fragments for the
rendering of OpenGL or DirectX three dimensional visudlaa can be also exploited for scientific computation.

Earlier experiments with scientific computing on the GPUuiegg an intricate programming technique because
GPU hardware and software was meant for real-time graptisadlization only. The developer had to use OpenGL
calls to reformulate small scientific computation programthe GLSL shading language native to the graphics board.
These programs were executed with data organized in radtamgxtures, with RGBA color representing some sci-
entific data. In this way, the output was rendered in pargiskel by pixel, by the pixel-shading processbisto a
frame buffer which was never visualized on the screen; thB/&€Eolors of that frame buffer would in fact represent
the output of the parallel scientific computation.

To alleviate the difficulty of this programming model NVIDIfecently proposed a development environment,
called CUDA [1], which allows general-purpose programmaorgthe GPU. Basically, the programmer can write
algorithms using a subset of the C++ language, which can bpibed into machine code and executed on the GPU
device. The GPU executes the sakeenelon each parallel thread which in turn operates over datatstres called
streams hence the namstreaming processor This computational architecture is called SIMT, Singlstinction
Multiple Thread, and it can be considered an advanced forBIMD Single Instruction Multiple Data architecture
according to the Flynn taxonomy [35]. To efficiently exechitedreds of threads in parallel, GPU multiprocessors are
hardware multithreaded: they can manage thousands of mentthreads with almost zero scheduling overhead, so
that hardware switching between threads is used effegtiodlide the latency to memory access operations.

We implemented our code on graphics board of the 9800 GX2¥afmm NVIDIA. Each board features two
GPU processors, for a total of 256 streaming processors @pabte of running 24,576 live threads. The processed
data resides in the 2GB of DDR3 device memory. The basic &lteat, at each simulation step, the CPU uploads data
into the GPU memory, launcheskarnelto be performed simultaneously on many parallel GPU threaus gathers
the results of the computations by downloading select gastof the GPU memory back into the host RAM. Out of
the entire computational time, the time slice spent on thel GRould be as small as possible to exploit the scalable
nature of the GPU parallelism.

For the problem at hand, not all of the multibody simulati@s been ported on the GPU. In particular, this is the
case of the collision detection engine, which is still exxeduon the CPU and becomes the bottleneck of the entire
simulation. Nonetheless, the proposed algorithm fits vasédl the GPU multithreaded model because the computation
can be split in multiple threads each acting on a single cvwotakinematic constraint.

Buffersfor data structures

In the proposed approach, the data structures on the GPUnatemented as large arraysuffer9 to match the
execution model associated with NVIDIA's CUDA. Specifigathreads are grouped in rectangular thread blocks, and
thread blocks are arranged in rectangular grids. Four méfeis are used: the contacts buffer, the constraints huffe
the reduction buffer, and the bodies buffer.

When designing the data structures of these buffers, sprialkshould be paid to minimize the memory overhead
caused by repeated transfers of large data structures. oMaredata structures should be organized to exploit fast
GPU coalesced memory access to fetch data for all paratledds in a warﬁ, which is a set of 32 threads all running
simultaneously in parallel. Provided that bytes are camtigs and that the!" thread accesses thd element in the
data structure, up to 512 bytes can be fetched in one operagi@ warp of threads. Failing to perform coalesced
memory access may slow the kernel significantly.

Numerical experiments show that for high memory throughipus better to pad the data into a four-float width
structure even at the cost of wasting memory space whenaemries end up not being used. Also, the variables
in the data structures are organized in a way that minimlzesitimber of fetch and store operations. This approach
maximizes the arithmetic intensity of the kernel code, asmemended by the CUDA development guidelines.

In the actual implementation of the method, the data stradtur the contacts has been mapped into columns of
four floats as shown in Fig. 2. Each contact will referencéwits touching bodies through the two pointéss and

SEarlier models of GPU implemented two kinds of parallel examutinits, the pixel processors and the vertex processarottmer were more
easily adapted to scientific computing. Modern GPUSs, instaplement a single type of execution units (caliteaming processormsr thread
processorswhich can be used for pixel shading, vertex processing,elsas for generic scientific computation.



Bp, in the fourth and seventh rows of the contact data structure

There is no need to store the entk® matrix for theit contact because it has zero entries for most of its part,
except for the two 12x3 blocks corresponding to the cootdmaf the two bodies in contact. In fact, once the
velocities of the two bodies,,, wa,, 5, andwp, have been fetched, the produd v” in step 5 of Algorithm 1 can
be performed as

DZ "= D’szt)Af‘Ai + DZ:wAwAz: + DZvBi'Bqt + Di,waBi (24)
with the adoption of the following 3x3 matrices
Di,, = —Al (252)
D/, =AT,AxSi4 (25b)
Di vy = Al (25¢)
D/, =-Al ApsSip (25d)
SinceD/,, = —D7, ., there is no need to store both matrices, so in each contacsttacture only a matrio;,

is stored, which is then used with opposite signs for eachefwo bodies.

Also the velocity update vectakv;, needed for the sum in step 7 of Algorithm 1, is sparse: it eaddromposed
in small subvectors. Specifically, given the masses andhitrdia tensors of the two bodies,, mp,, Ja, andJ s,
the termAv; will be computed and stored in four parts as follows:

Al y, = ijDi,UA A’yf"'l (26a)
Awa, =J3;'Dj o, Ay (26b)
Aip, =mp; Dy, Ayi (26c)
Awp, = JgilDi7wBA'y{+l (26d)

Note that those four parts of tiiev, terms are not stored in thieh contact data structure or in the data structure of
the two referenced bodies (because multiple contacts nfieyttee same body, hence they would overwrite the same
memory position). These velocity updates are instead gtara reduction buffer, which will be used to efficiently
perform the summation in step 7 of Algorithm 1. This will bedlissed shortly.

The constraints buffer, shown in Fig. 3, is based on a simiacept. Jacobiar’gV; of all scalar constraints are
stored in a sparse format, each corresponding to four Ws,,, V¥; .., V¥ ., VU, .. Therefore the product
VUIv" in step 6 of Algorithm 1 can be performed as the scalar value

VUIV = VU], Fa, + VU], wa, + VU], g, + V] wp, (27)

VA i,WwA

Also, the four parts of the sparse vecthy; can be computed and stored as

Aty =my 'V, Ayt (28a)
Awy, =1V, Ay (28b)
Aip, =mp! V¥, ,, Ayt (28c)
Awp, =I5 V¥, Ay (28d)

About the bodies buffer, Fig. 4 shows that each body is remtesl by a data structure containing the state (velocity
and position), the mass moments of inertia and mass valodgha external applied forde; and torqueC;. Forces
and torques, if any, are used to compute the third step ofrilgn 1. Note that to speed the iteration, it is advantageous
to store the inverse of the mass and inertias rather thandkiginal values, because the operatiof! DZA%Jr1
must be performed multiple times.

A software design decision that improved the overall penfomce regarded the delegation of contact preprocessing
step to the GPU. Specifically, instead of computing the dtectsires of the contacts on the host, only the contact

normals and contact points were copied into the GPU memdrgn;Ta GPU kernel computdﬂfm, DZWA, Dz?:wB,



GPU contacts buffer i-th contact data

Thread grid float4
i —
- Eii - 1 bi’n
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2 Dy |0
- bi,v
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han ||
6
7 Bi,B
* | Diw | |
Thread 9 1;
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Figure 2: Grid of data structures for frictional contactsGPU memory.

GPU constraints buffer

Thread grid
j-th constraint data
float4
/—%
Thread 1 |:|l|.!|TvA Bia
Thread block Thread block > Dq‘l’:\rln B
>
3 Dq‘l’,
£
4
0wl |
s b g | ¥
6 Ria[Rig[Nia[Nis

Figure 3: Grid of data structures for scalar constraint§RU memory.

7, bin, @s shown in Figure 5. This strategy leads to faster code migtlecause the preprocessing kernel runs in
parallel on the GPU, but also because it avoids the memomhesd incurred when copying the full contact structures
from host to the GPU. Finally, it should be pointed out that andb; ,, are always zero, and that the data structures
for both bodies and contacts on the GPU are processed irdthteeks and the thread blocks are organized in block
grids.

The Parallel Algorithm

A parallel version of an algorithm must respect the Lamportsistency model, that is the parallel execution must
produce the same results as the sequential program, regsuafithe number of threads [36].

Data dependency poses a constraint on the possibility shmyktforward parallelizations of algorithms. In fact,
denotingZ; andO; the sets of input and output variables of thih program fragment, Bernstein’s conditions state
that two fragments, j can be executed in parallel only if the following three caiadis are satisfiedZ; N O; = 0,
0,NZ; = 0andZ; N O; = 0. If all these conditions are satisfied, the program requikesynchronization of
memory and it belongs to the so callechbarassingly-paralletlass, the type of parallel execution most suitable for
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GPU bodies buffer
Thread grid j-th body data
float4
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Figure 4: Grid of data structures for rigid bodies, in GPU ey
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Figure 5: Contact data structure, before (left) and afigh(y the preprocessing kernel.
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GPU reduction buffer Vix Viy Viz|O | Body 0
Constraint 1oat4
Dl.l.lT 0 Wjx iyl
f—/%
T Xjx Xjy Xz
DLH_I\_/R 1 Av E
Dq{ah / Aw 0 / j Vi->< Vj.y VJ'.Z 2 Body 1
Y., T av FJ iy iz
bi ¥ I XX Xi
0-12_10 [0 2 N S0
e = L - % Vix Viy Vja|3 | oty 2
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I,V Aw 0 L
Tw . G ERAEEE
0 i S Jx iy x|m
b ,{y‘}/ (I ---: FJ':X FLY FLZ
7311 [o GixGiy G4

Kernel:
CCP impulse
Kernel:
reductior
Kernel:
speed upda

Figure 6: The reduction buffer avoids race conditions irapja@r updates of the same body state. In this example, the
first constraint refer to bodies 0 and 1, the second to bodégi®. Multiple updates to body 0 are then buffered and
accumulated with a reduction kernel.

GPU computing.

One can see that a parallelization of this class can be dagillemented for computations in steps 5 and 6 of
Algorithm 1, by simply assigning one contact per thread (aidilarly, one constraint per thread). In fact the results
of these computations would not overlap in memory, and it mélver happen that two parallel threads need to write
in the same memory location at the same time. These are thebsbnumerically-intensive steps of the CCP solver,
called theCCP contact iteration kernel and theCCP constraint iteration kernel.

However, the sums in step 7 of Algorithm 1 cannot be performigd embarrassingly-parallel implementations:
for example, it may happen that two or more contacts needdafzlr velocity updates to the same rigid body. A
possible approach to overcome this problem is presente’¥infor a similar problem. We developed an alternative
method, which we call parallel Reduction of Multiple Variedength Arrays (RMVLA). It uses a reduction buffer as
illustrated in Fig.6.

Summation of array values into a single memory destinatiafied data reduction, is a problem which can be
performed in parallel only at the cost of some fine-graingd dgnchronization [38]. Recent research on GPU parallel
architectures proposed hierarchical algorithms as a wagtiorm data reduction [39, 40]. The basic idea is depicted
in Fig.7: the summation is performed as a sequence of ireghacallel binary sums with exponentially-increasing
strides. In this way, at least for large data, a large numb#meads are kept busy.

We extended the parallel reduction concept to cope with teblem of step 7 of Algorithm 1. Specifically,
we assume that all contact threads store their resultsAtheand Aw; vectors) into non-overlapping slots of an
auxiliary array, called reduction buffer. To this end, @mtidata will contain pointerB; 4 andR; g which refer to the
destination slots in the reduction buffer. Also, slots refe to velocity updates of the same body must be contiguous
so that the reduction buffer contains sub-sequences otitelopdates (we call therh_-sequences) as if they were
sorted on the basis of the body they were applied to. It mustdigted out that no actual sorting is performed on
GPU: it is sufficient that the?; 4 and R; p indexes of the constraints are previously prepared by the ®kh a
simple bookkeeping algorithm to achieve this sorted ordgri

Since the reduction buffer contains sequences of updatesach) -sequence must be summed to accumulate
the effects into singld\v and Aw for the referenced body, a hierarchical binary-tree radadtas been used on each
Y -sequence as illustrated in Fig.8. While somgsequences may be long, other may be $hamd it would be
undesirable to start a single binary reduction for eatisequence. Instead, they are processed at once by distgibut
threads to all the reduction buffer slots. If some binary suation finishes earlier than others, the hardware thread

4As an example of an odd configuration, which can be still sokfidiently with our implementation, think about simulatingaage block
placed on one thousand of spheres: this will create a singeequence of 1000 updates to the same body, and one thousamdlby " -sequences
of single updates, for the 1000 spheres.
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2 result

Values to sum

Step 1
summatiois
Step 2
summatiois
Step 3
Summatior

Figure 7: The concept which inspires the reduction algoritisums are performed with a binary tree, to exploit the
parallel nature of the stream processors.

Reduction kernel Reduction kernel
step 1 step 2
Thread Av Av Av
Ax 0 2w 0 Aw 0 2 updates of body 1
Thread { Av }EB
- g Aw |1
2T
Thread § é’; Av Av
Aw 2 Aw 2
Thread Av }EB
Aw 3
N g Av Av Av
Thread > %

{ § -§ A 0 A 0 A 0 | 2 updates of body 2
Thread Av S Av av 2 updates of body 3
Aw |0 Aw |0 Aw |0

Thread { Av }9
™y
22 Aw |1
o8B
Thread o> Av Av
Aw 2 Aw |2
9 Av Av Av
Thread j>;~ k] 2 updates of body 4
gg Aw [0 Aw |0 Aw [0

Figure 8: Example of our RMVLA reduction algorithm appliedhe reduction buffer. After multiple passes, reduction
happens in-place, on multip)e -sequences of variable length.
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scheduler will automatically keep the streaming procesbuosy by applying them to uncomplete threads. In this way,
except for occasional divergence in thread warps, multggseor occupancy is maximized. The RMVLA algorithm
requires for each slot to contain an auxiliary index thatéases in each_-sequence. It starts from 0 in all first
slots of the) -sequence and it is used to compute the stride for the irepaemmation. These indexes can be
precomputed easily by the CPU. Note that, given its hiefeatmature, the RMVLA algorithm must be iterated at
leastnr = l0g,(n.,) times before completing the reduction, whexrg is the length of the largest -sequence (in
most simulation we performeda, rarely exceeds 3).

The pseudocode in Algorithm 3 outlines how Algorithm 1 and@ithm 2 can be combined and turned into a
sequence of computational phases, for the most part exkasfgarallel kernels on the GPU. In terms of resource allo-
cation, the computation kernels followed a one-threadppely, one-thread-per-contact, or one-thread-per-cainst
approach, depending on the phase of the algorithm.

Algorithm 3: Complete Time Stepping, when GPU is Available.

1. (Host, seria) Perform collision detection between bodies, obtainingpossible contact points within a distance
4, as contact positions 4, s; g on the two touching surfaces, and normajs If warm start is used, then fetch
last reactions in contact point” (obtained in previous frame, if the contact is persistent) aety;, = +;;
otherwise set; = 0.

2. (Host, seria) Copy contact and body data structures from host memory td RFfers. Copy also constraint
data (residuals; and jacobians) into the constraint buffer. Note: also camjpmd storeR; 4, R; g, n; 4 and
n; g iN contact and constraint structures.

3. (GPU, body-parallglForce kernel. For each body, compute forceég ), gV, v(V)), if any. Store these forces
and torques intd”; andC';. For example, apply the gravitational and gyroscopic ferce

4. (GPU, contact-parall@/Contact preprocessing kernel. For each contact, given contact normal and posi-
tion, compute in-place the matric&’, , D ~andD? _, then compute); and the contact residudl;, =

%,V AT T,wA t,wp!

5. (GPU, body-parallel CCP force kernel. For each bodyj, initialize body velocities:‘rg”l) =h m;le and
W = hI7Cy.

6. (If warm starting is needed, simply skip the computatiofishe Afy;”“ in the following two steps and use
Ayt = 7 instead).

K2

7. (GPU, contact-parall@ICCP contact iteration kernel. For each contaat do
vt = XNy, (77 —wn; (DIvT +b;)) + (1 — A\)77. Note thatD?'v" is evaluated with sparse data, using
Eq. (24). StoreAy/tt = 471 — 47 in contact buffer. Compute sparse updates to the velodfigise two

connected bodied andB, that is the four vectors of Eq. (26), and store them inffie andR; g slots of the
reduction buffer. Also copy:; 4 andn; g in the same slots.

8. (GPU, constraint-parallpICCP constraint iteration kernel. For each constrairit do
Yt =X (v —wn (VIIVT +0;)) + (1 — A)y7. Note thatV¥!v™ is evaluated with sparse data, using
Eq. (27). StoreAy/tt = 471 — 47 in contact buffer. Compute sparse updates to the velodfigise two

connected bodied and B, that is the four vectors of Eq. (28), and store them infhe andR; s slots of the
reduction buffer. Also copy:; 4 andn; g in the same slots.

9. (GPU, reduction-slot-parallpeRMVLA binary reduction kernel. Do an inner loop with this kernel, starting
with & = nr and ending withk = 1. At the k-th inner iteration, for each slot of the reduction kernithée slot
repetition counten, > 2*—1, add slot values to the slot whose index is arretrated positions, and set counter
to 0.

10. (GPU, body-parallgl Body velocity updates kernel. For eachj body, add the cumulative velocity updates
which can be fetched from the reduction buffer, using thex;.

11. Repeat from step 7 until convergence or until number d?Gteps reached> r,, 4.
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N.of bricks Serial GPU parallel

\ersion Version
Core Duo 2.33GHz GeForce 8800 GTX
1000 0.43 0.06
2000 0.87 0.10
8000 3.19 0.42

Table 1: Average simulation times (in s) for a single timggiéthe 3D wall benchmark.

12. (GPU, body-parallgl Time integration kernel. For eachj body, perform time integration aéjl“) = qg»l) +
hL(qu))V§z+1>

13. (Host, serid) Copy body data structures from GPU memory to host memorypy@ontact multipliers from
GPU memory to host memory.

Numerical Results

We tested the GPU-based parallel method with a benchmatkgmoand compared it, in terms of computing ve-
locities, with the serial method. The benchmark problensigia of a 3D wall which gets an initial hit and falls into
pieces. Depending on the level of complexity of the simul&&enario, there are 1000, 2000 or 8000 bricks, simulated
as rigid bodies. The number of contacts is not constant guha simulation; the amount of contacts can reach very
high values during the simulation of the case of 8000 brickwre the peak number of contacts is in the order of tens
of thousands. The friction coefficient between bricks, aethieen bricks and ground, was set to 0.6. The time step
for the entire simulation i = 0.01s.

The simulation time increases linearly with the number alibs in the model. Moreover, the GPU algorithm is,
on average, one order of magnitude faster than the seralitim (see Tab.1).

The speedup shown in the table could be even more dramatie ifdes into account that those results include also
the time spent in performing collision detection and othBtJdntensive computations which are not yet parallelized
[41]. In fact, once the CCP solver is implemented in the G, dollision detection becomes the bottleneck of the
entire process. This motivates future research about ttadigaation of collision detection algorithms.

In a second example we simulated a bicycle running on uneaeenpent, as a case of system with both contacts
and bilateral constraints. The vehicle is modeled with Erigpdies, while the driver is built with 13 rigid bodies. All
parts can collide with frictional contacts. The total numbgkscalar bilateral constraints, caused by joints andslitgk
about one hundred. The contact between the tires and thedjiotepresented by a custom model which we developed
and validated with experimental tests in our labs [42]; tuistact model takes into account the elastic deformation of
the tyres and can be used for simulating uneven pavememgsreF® shows two frames of the simulation, where the
effect of misplaced stone slabs can be studied.

We noticed that, for simple systems like this one, the speeduning from GPU parallel processing is not sub-
stantial, and the CPU timings would be acceptable anywayoferappreciable speedup would happen if simulating,
for example, many bicycles at once: this is the case, foairtst, of genetic optimization or sensitivity analysis.

Conclusions

A parallel numerical method has been proposed for the stinalaf multibody mechanical systems with frictional
contacts and bilateral constraints. The method draws orDNV8 CUDA library and compile-time support to take
advantage of the high-performance parallel computatisouees available on the GPU. The parallel method is based
on an iterative approach that falls within the mathematiichework of measure differential inclusions [24] and is
backed by a rigorous convergence analysis [3].

The parallelization of the method required the developroéatnovel data reduction algorithm, called RMVLA,
which maximizes the occupancy of the streaming processossdritical part of the execution code that requires
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Figure 9: Example: simulation of a dummy on a bycicle.

fine-grained data synchronization. Preliminary resultsioled with the proposed method demonstrate that for large
frictional contact problems the time required to solve theeccomplementarity problem, which is the computational
bottleneck associated with the sequential algorithm, leas krastically reduced. The iterative solver has beereimpl
mented in the C++ language in the open source simulatiowardtChrono::Engine. Future efforts will address the
possibility of using clusters of multiple GPU boards on theng host, as well as porting part of the collision detection
engine code to the GPU.
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