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Abstract. This work illustrates the application of general-purpose multi-
body formulations to the analysis of rotating systems dynamics. Various
benchmark problems encompassing multiple deformable components are
presented and analyzed. The suitability of the approach is assessed and
conclusions are drawn on the basis of correlating the numerical simula-
tions with analogous examples from the open literature.
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1 Introduction

Multibody dynamics is a viable technology for the analysis of complex multidis-
ciplinary mechanisms. Rotating systems represent a special class of mechanisms,
characterized by the non-negligible angular motion they are subjected to. Tradi-
tionally, systems of this kind have been analyzed by dedicated formulations and
software tools that intrinsically take into account the reference rotation motion
of the system. Such approaches may be extremely efficient and effective, but may
suffer from lack of generality. For example, in the field of helicopter aeromechan-
ics, so-called “comprehensive tools” have been developed (e.g. CAMRAD JA, [1,
2]). Such formulations are specifically tailored for most of the needs in the anal-
ysis of helicopter rotor aeroelasticity, posing several restrictions on the topology
of the problem and on the type of analysis. Later, the need to consider rather
general configurations and non-standard analysis pushed for the incorporation
of features that are typical of multibody dynamics (e.g. CAMRAD II, [3]).

Nowadays, rather general multibody formulations are used to model and an-
alyze the dynamics of a variety of systems. MBDyn3 [4] and Chrono::Engine4

[5, 6] are noteworthy examples of original formulations implemented in freely

3 http://www.mbdyn.org/
4 http://www.projectchrono.org/



distributed software originating from the academia. This work illustrates the
application of general-purpose multibody formulations to the analysis of flexi-
ble rotating systems dynamics, and presents benchmarks that demonstrate the
suitability of this approach.

The need to simulate flexible parts with large rotations within a multibody
dynamics framework calls for advanced formulations, mostly rooted in finite
element approximations of structural components; see for example [7–9].

The three dimensional beam is one of the most used models for this class of
problems. The case of large rotations poses difficulties that researchers tried to
overcome in different ways. A recent approach is based on the absolute nodal
coordinate formulation, see for instance [10], whereas other approaches are based
on the so-called corotational formulation, as in [11–13].

In this paper we will present benchmarks based on public data available at
[14] and recently discussed in [15] within a joint effort for flexible multibody
formulations and software benchmarking, using software rooted on two different
approaches. MBDyn adopts the geometrically-exact beam formulation (GEBF)
described in [16] and [17], whereas Chrono::Engine uses the element-independent
corotational formulation presented in [18], with some modifications. Both use
an incremental approach for the time integration of large rotations. Whenever
available, equivalent results obtained with Dymore are also presented. Dymore
is based on the GEBF, and uses the Wiener-Milenković parameters to represent
finite rotations. For the sake of completeness, we succinctly present the coro-
tational formulation implemented in Chrono::Engine, whereas for the GEBF
implemented in MBDyn we refer to the above mentioned literature.

2 Corotational formulation

Corotational formulations foster the reuse of finite element algorithms and the-
ories whose behavior in the linear field are already well known and tested.

Figure 1 shows the concept of the corotational formulation in Chrono::Engine.
A floating coordinate system F follows the deformed element, thus the overall
gross motion into the deformed state CD can be seen as the superposition of
a large rigid body motion from the reference configuration C0 to the so called
floating or shadow configuration CS , plus a local small-strain deformation from
CS to CD. In this work, underlined symbols will represent variables expressed in
the basis of the floating reference F .

The rationale of the corotational approach is a procedure to compute a global
tangent stiffness Ke and a global force fe for each element e, given its local K,
its local f and the rigid body motion of the frame F in C0 to F in CS .

Whenever the element moves, the position and rotation of F is updated. In
literature there are many options to this end; to avoid dependence on connectiv-
ity [19], in our implementation we decided to put the origin of F in the midpoint
of the AB segment, as xF = 1

2 (xB−xA), and we align its X axis with xB−xA.
The remaining Y and Z axes of F are obtained with a Gram-Schmidt orthogo-
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Fig. 1. A schematic representation of the corotational concept.

nalization, enforcing Y to bisect the Y axes of A and B when projected on the
plane orthogonal to X. This is important in case of torsion.

The rotation matrix of F is RF ∈ SO3; it is parametrized with the unit
quaternion ρF ∈ H1. Similarly, quaternions are used to store the rotations of
the two nodes, with ρA and ρB . Hence the state of the system is s = [q,v] with
q = [x1,ρ1,x2,ρ2, . . . ,xn,ρn] ∈ R

(3+4)n and v = [v1,ω1,v2,ω2, . . . ,vn,ωn] ∈
R

(3+3)n. Note that, because of some algorithmic optimizations, we consider ωi

to be expressed in the local basis of the i-th node unlike xi,ρi,vi that are
considered in the global basis.

For each element, given the global positions and rotations of the two end
nodes, stored in the s state at indexes iA and iB , it is possible to compute the
actual displacement part of d as dA = xA−xA0

= Rt
F0
(xA0

−xF0
)−Rt

F (xA−xF )

and dB = xB − xB0
= Rt

F0
(xB0

− xF0
)−Rt

F (xB − xF ).
The rotation part, however, introduces a complication, owing to the fact

that finite rotations do not compose as vectors and must be dealt with special
algebraic tools. First, one must compute the local rotation of nodes respect
to the F floating reference with RA = Rt

FRAR
t
A∆

and RB = Rt
FRBR

t
B∆

.
Equivalently, one can use quaternion products to write: ρ

A
= ρt

FρAρ
t
A∆

and

ρ
B

= ρt
FρBρ

t
B∆

. Here the optional term ρt
A∆

(or Rt
A∆

) represents the initial
rotation of node A respect to F0.

Then, the finite rotation pseudovectors θA and θB are obtained in the follow-
ing way. It is known that, for an element R in Lie group SO(3) and an element
Θ in the corresponding Lie algebra so(3), one has Θ = skew(θ) where θ is also
an element of the Lie group Spin(3), double cover of SO(3). Vice versa, one can
extract the θ vector from the Θ spinor by computing θ = axial(Θ). Also, it
holds R = exp(Θ) and Θ = Log(R), where exp(·) builds the rotation matrix
using an exponential; for details on this exponential and the implementation of
skew(·), axial(·), Log(·), see for example [20].



In the work of other Authors, the theory above is used to compute θA =
axial(Log(RA)), but in our case the adoption of quaternions lead to an alterna-
tive, more straightforward expression. In fact it is known that for a unit quater-
nion ρ ∈ H1 it holds ρ = [cos(θ/2),u sin(θ/2)], with rotation angle θ = |θ| about
rotation unit vector u = θ/θ. Therefore it is possible to compute θA and θB as:
θA = 2arccos(<(ρ

A
)), uA = 1

sin(θA/2)=(ρA
), and θA = θAuA (the same for the

B node).
Once d = [dA,θA,dB ,θB ] has been computed, well-known theories are avail-

able to compute the stiffness matrix K = K(d). in this work we compute K

using the Eulero-Bernoulli theory, and in general we set f
in

= Kd.
The local data K and f

in
must be mapped to the global reference: to this

end we use the corotational approach expressed in [13], where the adoption of
projectors that filter rigid body motion is used to improve the consistency and the
convergence of the method. Such formulation requires the introduction of various
matrices, in the following we succinctly report them, along with modifications
that we use in our method.

– theΛ(θ) = ∂θ
∂ω matrix, whose analytic expression isΛ(θ) = I3×3−

1
2 skew(θ)+

ζskew(θ)2 with ζ =
(

1− 1
2θcotan(

1
2θ)

)

/θ2,
– the H transformation matrix:

H =

(

Hn(θA) 06×6

I6×6 Hn(θB)

)

; Hn(θ) =

(

I3×3 03×3

03×3 Λ(θ)

)

(1)

that tends to a unit matrix I12×12 for θ ↓ 0,
– the P projector matrix: P = I12×12 − SDG where SD is the so called spin

lever matrix, built with xA and xB , the positions of the end nodes respect
to the center F of the beam, expressed in F basis:

SD =









−skew(xA)
I3×3

−skew(xB)
I3×3









(2)

and where G is the so called spin fitter matrix, that takes into account
the change of orientation of the F frame as the end nodes change position
or rotation. For the two nodes beam, it is G = [∂ωF /∂xA, ∂ωF /∂ωA, . . .],
and for our custom choice of orientation and position of F , described at the
beginning of this section, we have

G =





0 0 0 1/2 0 0 0 0 0 1/2 0 0
0 0 1/L 0 0 0 0 0 −1/L 0 0 0
0 −1/L 0 0 0 0 0 1/L 0 0 0 0



 (3)

Note that this expression is different from the one reported in [18] because
they put the F frame at the beginning of the beam whereas we put it in the
middle, moreover it rotates a bit differently,



– the R� rotation-transformation matrix:

R� =









RF

Rt
ARF

RF

Rt
BRF









(4)

Note that R� is different from the one often reported in literature, ex. in in
[18] or [13], because we update the rotation of nodes with rotation pseudovec-
tors expressed in node local coordinates (hence the Rt

A and Rt
B transforma-

tion), coherently with what we said about angular velocities being expressed
in local references and not in global reference, in our state s.

Given the matrices above, one can compute the global version of internal
forces:

f in = R�P
tHtf

in
(5)

For the computation of the global tangent stiffness, one needs two additional
matrices. First, we split the last part of Eq. (5) in four three-dimensional vectors:
P tHtf

in
= [nA,mA,nB ,mB ], then we build the F nm and F n matrices:

F nm =









skew(nA)
skew(mA)
skew(nB)
skew(mB)









, F n =









skew(nA)
03×3

skew(nB)
03×3









(6)

Finally one can compute the tangent stiffness matrix of the element in global
coordinates, also accounting for geometric stiffening:

K = R�

(

P tHtKHP − F nmG−GtF t
nP + P tLHP

)

Rt
�

(7)

K = R� (KM −KGR −KGP +KGH)Rt
�

(8)

We remark the following notes:

– the three terms KGR (related to change in rotation of the F frame), KGP

(related to changes in projectors), KGH (related to changes in H) are re-
sponsible of the so called geometric stiffness,

– the KGH term is not used in our formulation since we found no major
benefits in computing it; see [13] for details on LH ,

– the KM , which represents the so called material stiffness, is always sym-
metric (at least with Eulero-Bernoulli beams), but the terms for geometric
stiffness introduce asymmetry;

– some Authors [21] show that, under mild assumptions, neglecting the asym-
metric part does not hampers the convergence of Newton-Raphson iterations;
hence the variant:Ksymm = R�

(

P tHtKHP − F syG−GtF t
syP

)

Rt
�
where

F sy = 1
2 (F nm + F n)



3 Benchmark: Princeton beam experiment

This benchmark aims at the validation of the finite element implementations
in a static problem with geometric nonlinearity. A thin cantilevered beam, con-
strained in O, is subject to large deformations and large rotations because of a
tip load in E; for different angles θ one obtains out-of-plane displacements even
if the load is vertical, and the beam is subject to a twisting action.

Experimental results, for a beam made with 7075 aluminium, are available
in [22, 23] and are used for comparison.

We list the main properties, with reference to Figure 2: beam length L =
0.508m, section thickness T = 3.2024mm, section height H = 12.77mm, Young

modulus E = 71.7GPa, ν = 0.31, G = E (1+ν)
2 = 27.37GPa.

Three loading conditions are tested: P1 = 4.448N, P2 = 8.896N, and P3 =
13.345N, for increasing values of the θ angle in the [0◦, 90◦] range.

Results in Figs. 3, 4 and 5 show a good agreement between the present
corotational beam formulation and the geometrically-exact beam formulations
presented in [16] for Dymore and in [17] for MBDyn, as well as an agreement
with the experimental results in [22, 23], which was recently discussed in [15].

Fig. 2. Setup of the benchmark for the
Princeton beam experiment.
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Fig. 3. Twist rotation of the beam for the
Princeton experiment.

We remark that, because of the geometric nonlinearity, the solver has to
perform few Newton-Raphson steps before obtaining a zero residual. For very
large nonlinearities, a continuation strategy might help the convergence of the
Newton-Raphson solver.

4 Benchmark: Lateral buckling

This benchmark tests nonlinear effects in a dynamic context. A beam is bent
in its plane of greatest flexural rigidity, up to the point that triggers lateral
buckling. In a quasi-static non-linear analysis, results are visible in Fig. 7. In the
context of dynamics, when buckling occurs, the beam snaps laterally and twists,
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Fig. 4. Flapwise displacement at the
beam tip versus loading angle for three
loading conditions.
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Fig. 5. Chordwise displacement at the
beam tip versus loading angle for three
loading conditions.

inducing highly oscillatory motions. The corotational approach can capture the
nonlinear nature of this phenomena.

Fig. 6. Setup of the benchmark for lateral
buckling dynamics.
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Fig. 7. Static displacement of the beam
along i2, at the mid point.

As shown in Fig. 6, the RC beam is clamped at point R, its length is L = 1m,
and its rectangular section has size H = 100mm and B = 10mm.

To induce the snapping, a tip load at C is imposed by mean of a rotating
crank GB and a vertical rod TB, with a spherical joint in C and a revolute joint
in B. An initial imperfection is simulated by displacing the vertical bar and the
crank by an offset d = 0.1mm in the off-plane direction i2. The crank has length
Lc = 0.05m and a circular section with diameter Dr = 24mm, while the vertical
rod has a length Lr = 0.25m and a circular section with diameter Dr = 48mm.
The rotation of the crank is initially enforced by a prescribed motion function
φc(t) = π(1− cos(πt/Tc))/2, with Tc = 0.4s, then for t > Tc it is φc(t) = π.



All parts are made of aluminum, hence with Young modulus E = 73GPa and
Poisson ratio ν = 0.3. Given the above mentioned sections, their inertia values
Izz and Iyy and their torsion constants J are computed using formulas available
in classical textbooks.
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Fig. 8. Displacement of the beam along
i2, at the mid point.
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Fig. 9. Angular velocity of the beam, at
the mid point.

In the Chrono::Engine test, the RC beam is modeled with 12 finite ele-
ments, whereas the crank and the rod are modeled with 3 elements each. Re-
sults in Figs. 8 and 9 show that the lateral buckling is triggered exactly at the
same moment for all the formulations, although the Chrono::Engine integral is
more damped. The numerical damping is a consequence of the fact that the
Chrono::Engine default integrator is a timestepper for DVI non-smooth prob-
lems [24, 25]. This, in the case of no frictional contacts, boils down to a linearly-
implicit first-order scheme, hence it shows the same damping effect of an implicit
Euler method. Other integrals are obtained with higher order methods and are
affected by numerical damping to a much lower degree.

5 Benchmark: Unbalanced rotating shaft

This benchmark explores the reliability of the numerical method in the analysis
of a flexible system rotating at finite angular velocity. A rotating unbalanced
shaft of length L = 6m is integrated in time. A rigid disk is connected to the
shaft at mid-span, above the reference shaft axis by an offset d = 0.05m. The
shaft is made of steel (density ρ = 7800kg/m3, Young’s modulus E = 210GPa,
Poisson’s ratio ν = 0.3). The cross section is annular (ri = 0.045m, ro = 0.05m).
The mass of the disk is md = 70.573kg, the radius is rd = 0.24m, and the
thickness is td = 0.05m. The system is subjected to gravity (g = 9.81 m/s2)
directed transversely. The end ‘R’ of the shaft is connected to the ground by
a cylindrical joint (displacement along and rotation about the shaft’s axis are
permitted). The end ‘T’ is supported by a revolute joint; the relative angular



Fig. 10. Setup of the unbalanced
rotating shaft benchmark.
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Fig. 11. Mid-point transverse displacement of
unbalanced rotating shaft.

velocity about the shaft axis is prescribed as a function of time,

Ω(t) =















A1ω(1− cos(πt/T1))/2 0 ≤ t ≤ T1

A1ω T1 < t ≤ T2

A1ω + (A2 −A1)ω(1− cos(π(t− T2)/(T3 − T2)))/2 T2 < t ≤ T3

A2ω T3 < t

with A1 = 0.8, A2 = 1.2, T1 = 0.5s, T2 = 1s, T3 = 1.25s, and ω = 60 rad/s, close
to the first natural frequency of the system. The shaft accelerates from zero and
passes from sub-critical to super-critical regime; when passing through the first
natural bending frequency of the system, lateral oscillations occur and significant
forces take place, as predicted by the linear theory of unbalanced rotors.

6 Conclusions

Benchmarks show that the presented multibody software frameworks can accom-
modate flexible elements of beam type that can match the requirements of rotor
dynamics, yet keeping the benefits of general-purpose multibody tools, such as
unlimited number of constraints, actuators and rigid parts.
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